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1. Small-Data Learning: Motivation & Requirements 2. Our Solution : Deep Probabilistic Kernel Learning

3. Training Algorithm: Functional GD 4. Results (UCI CTSlice Dataset)

DPKL (our method) gives lower RMSE (better accuracy) and lower negative log-likelihood (better Uncertainty Quantification) for all sample sizes
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Requirements:

➢Sample Efficiency: Accurate predictions on test data 

even with small amounts of training data

➢Uncertainty Quantification: Signal of low model 

confidence in underrepresented regions

➢Representation Learning: Capturing patterns in 

complex/high-dimensional data 

5. Take Home Message

Ø Small data learning requires models that can 
provide uncertainty aware prediction and 
representation learning using only a few 
samples

Ø DPKL achieves this goal by combining BNNs 
and GPs in a principled fashion and training 
the model end-to-end using Functional 
Gradient Descent

Ø A rigorous understanding of the sample 
complexity of BNNs is needed
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Ø Results for CTSlice (384 dimensional) Dataset 
Ø Number of training samples : {50,100,200,300,400,500}
Ø Baselines : Vanilla GP, Deep Kernel Learning (DKL)

1.Initialization:
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3.Convergence:
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Weighted average of gradients

Weights (ensure that the samples don’t diverge)
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● Bayesian Neural Network (BNN) maps data points to probability distributions

● Gaussian Process (GP) uses a kernel between probability distributions

● BNN is trained by minimizing the GP negative log likelihood

Motivation:

Ø Scientific data is expensive to 

collect and label

Ø Small datasets typically lead 

to poor model performance 

(inaccurate/overconfident)


