

Adversarial Data Augmentation Improves Unsupervised Machine Learning

Chia-Yi Hsu¹, Songtao Lu², Pin-Yu Chen², Sijia Liu³ and Chia-Mu Yu¹

¹National Yang Ming Chiao Tung University, Taiwan ²Al Foundations Learning Group, IBM Thomas J. Watson Research Center, USA ³Michigan State University, USA

ABSTRACT

We propose a framework of generating adversarial examples for **unsupervised** models and demonstrate novel applications to data augmentation. Our framework exploits a mutual information neural estimator as an information-theoretic The outer minimization problem finds the best perturbation δ with data and perturbation feasibility constraints $x + \delta \in [0,1]^d$ and $\delta \in [\epsilon, -\epsilon]^d$. The inner maximization associates a variable $c \ge 0$ with the original attack criterion $f_x(x + \delta) \le 0$.

Experiments

- similarity measure to generate adversarial examples without supervision. We propose a new MinMax algorithm for efficient generation of unsupervised adversarial examples.
- When using unsupervised adversarial examples as a simple plugin data augmentation tool for model retraining, significant improvements are consistently observed across different unsupervised tasks and datasets, including **data reconstruction**, **representation learning**, **and contrastive learning**.

The unsupervised attack formulation is as follows:

 $\underset{\delta}{\text{Minimize}} \quad I_{\Theta}(x, x + \delta)$

such that $x + \delta \in [0, 1]^d$, $\delta \in [-\epsilon, \epsilon]^d$ and $f_x^{\text{unsup}}(x + \delta) \le 0$

Here we use an auto-encoder $\Phi(.)$ for data reconstruction to illustrate the unsupervised attack formulation. The design principle can naturally extend to other unsupervised tasks. The autoencoder Φ takes a data sample x as an input and outputs a reconstructed data sample $\Phi(x)$. Different from the rationale of supervised attack, for unsupervised attack we propose to use MINE to find the least similar perturbed data sample $x + \delta$ with respect to x while ensuring there construction loss of $\Phi(x + \delta)$ is no greater than $\Phi(x)$ (i.e., the criterion of successful attack for data reconstruction).

UAE Improves Data Reconstruction.

				MNI	ST				
	Reconstruction Error (test set)			ASR (training set)					
Autoencoder	Original	MINE-UAE	L_2 -UAE	$\begin{array}{c} \text{GA} \\ (\sigma = 0.01) \end{array}$	$\begin{array}{c} {\rm GA} \\ (\sigma=10^{-3}) \end{array}$	MINE-UAE	L_2 -UAE	$\begin{array}{c} {\rm GA} \\ (\sigma=0.01) \end{array}$	$\begin{array}{c} {\rm GA} \\ (\sigma=10^{-3}) \end{array}$
Sparse	0.00561	0.00243 († 56.7%)	0.00348 († 38.0%)	0.00280±2.60e-05 († 50.1%)	0.00280±3.71e-05 († 50.1%)	100%	99.18%	54.10%	63.95%
Dense	0.00258	0.00228 († 11.6%)	0.00286 (↓ 6.0%)	0.00244±0.00014 († 5.4%)	0.00238±0.00012 († 7.8%)	92.99%	99.94%	48.53%	58.47%
Convolutional	0.00294	0.00256 († 12.9%)	0.00364 (↓ 23.8%)	0.00301 ± 0.00011 ($\downarrow 2.4\%$)	0.00304 ± 0.00015 ($\downarrow 3.4\%$)	99.86%	99.61%	68.71%	99.61%
Adversarial	0.04785	0.04581 († 4.3%)	0.06098 (↓ 27.4%)	0.05793±0.00501 (↓ 21%)	$\begin{array}{c} 0.05544 {\pm} 0.00567 \\ (\downarrow 15.86\%) \end{array}$	98.46%	43.54%	99.79%	99.83%
	SVHN								
Sparse	0.00887	0.00235 († 73.5%)	0.00315 († 64.5%)	0.00301±0.00137 († 66.1%)	0.00293±0.00078 († 67.4%)	100%	72.16%	72.42%	79.92%
Dense	0.00659	0.00421 († 36.1%)	0.00550 († 16.5%)	0.00858±0.00232 (↓ 30.2%)	0.00860 ± 0.00190 ($\downarrow 30.5\%$)	99.99%	82.65%	92.3%	93.92%
Convolutional	0.00128	0.00095 († 25.8%)	0.00121 († 5.5%)	0.00098 ± 3.77e-05 († 25.4%)	0.00104±7.41e-05 († 18.8%)	100%	56%	96.40%	99.24%
Adversarial	0.00173	0.00129 († 25.4%)	0.00181 (↓ 27.4%)	0.00161±0.00061 († 6.9%)	0.00130±0.00037 († 24.9%)	94.82%	58.98%	97.31%	99.85%

Table 1: Comparison of data reconstruction by retraining the autoencoder on the UAE-augmented data. The reconstruction error is the average L_2 reconstruction loss of the test set. The improvement(in green/red) is with respect to the original model. The attack success rate (ASR) is the fraction of augmented training data having smaller reconstruction loss than the original loss.

■ UAE Improves Representation Learning. The concrete autoencoder proposed in Balin et al. [1] is an unsupervised feature selection method which recognizes a subset of the most informative features through an additional concrete select layer with *M* nodes in the encoder for data reconstruction. We

Figure 1: Generation of unsupervised adversarial examples (UAEs)

Here we propose a unified MinMax algorithm for solving the aforementioned unsupervised attack formulation. For simplicity, we will use f_x to denote the attack criterion for f_x^{unsup} . We reformulate the attack generation via MINE as the following MinMax optimization problem with simple convex set

apply MINE-UAE for data augmentation on a variety of datasets.

	Reconstruction Error (test set) Accuracy (test set)			ASR	
Dataset	Original	MINE-UAE	Original	MINE-UAE	MINE-UAE
MNIST	0.01170	0.01142 († 2.4%)	94.97%	95.41%	99.98%
Fashion MMIST	0.01307	0.01254 († 4.1%)	84.92%	85.24%	99.99%
Isolet	0.01200	0.01159 († 3.4%)	81.98%	82.93%	100%
Coil-20	0.00693	0.01374 (J 98.3%)	98.96%	96.88%	9.21%
Mice Protein	0.00651	0.00611 († 6.1%)	89.81%	91.2%	40.24%
Activity	0.00337	0.00300 († 11.0%)	83.38%	84.45%	96.52%

Table 2: Performance evaluation of representation learning by the concrete autoencoder and the resulting classification accuracy.

UAE Improves Contrastive Learning.

Table 3: Comparison of contrastive loss and the resulting accuracy on CIFAR-10 using SimCLR Chen et al. [2]. The attack success rate (ASR) is the fraction

CIFAR-10						
Model Loss (test set)		Accuracy (test set)	ASR			
Original	0.29010	91.30%	-			
MINE-UAE	0.26755 († 7.8%)	92.88%	100%			

of augmented training data having smaller contrastive loss than the original loss. The SimCLR model is ResNet-18 and the batch size is set to be 512.

CONCLUSION

MINE-based UAEs can be used as a simple yet effective plug-in data augmentation tool and achieve significant performance gains in data reconstruction, representation learning, and contrastive learning.

REFERENCE

contrastive learning of visual representations. In International Conference on Machine Learning, 2018.