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Motivation

Our work is based on an observation of decoder-based generative models, where a deterministic

operator is learned to map a simple, known distribution pZ to the target data distribution pX .

Figure 1:Decoder based generative models can be viewed as discrete-time evaluations of a dynamical system

As observed in [1], decoders → discrete-time dynamical systems, which allows us to link gener-

ative models to well studied objects in dynamical systems, including the transfer operator.

Transfer Operator in Dynamical Systems

For a non-singular deterministic mapping f on a measure space (X,B, µ) such that f (Z) ∼ pX ,
the transfer operator (or Perron-Frobenius operator) P : M1

+(X) → M1
+(X) is a linear operator in

the space of probability densities defined as

P ∈

{∫
Λ
(PpZ)dµ =

∫
f−1(Λ)

pZdµ, ∀Λ ∈ B

}

With this definition, we havePpZ = pX . Oncewe obtainP , we can use it to conveniently transfer
pZ to pX . Q: Can we learn P directly for generative models? A: Can be challenging, but learning in

Reproducing Kenrel Hilbert Space (RKHS) helps.

Requires rich basis functions → RKHS spanned by infinite bases

Samples rather than densities → easy to compute empirical kernel mean embedding

Cannot apply directly on samples → reproducing property of RKHS

Kernel Perron-Frobenius Operator (kPF)

[3] proposes an operator in RKHS that transfers the densities in the mean embedded form. De-

fine φ(z) = k(·, z), ψ(x) = l(·, x) as the feature mappings of RKHS H and G. The kernel mean
embeddings (KME) of pZ and pX are given by

µZ = Ez∼pZ [φ(z)], µX = Ex∼pX [ψ(x)]

Note that KME is injective for characteristic kernels. The kernel Perron-Frobenius operator PE is
defined using the (uncentered) covariance/cross-covariance operators.

PE = CZX C−1
ZZ , where CX Z = E(x,z)∼pZ,X [ψ(x) ⊗ φ(z)], CZZ = Ez∼pZ [φ(z) ⊗ φ(z)]

We have µX = PEµZ under certain conditions.

Main Result

In the context of generative modeling, we propose to use the empirical form of kPF to transfer

pZ to pX . Let Φ = [φ(zi)]i∈[n] and Ψ = [ψ(xi)]i∈[n]. The empirical kPF is given by

P̂E = ĈZX (ĈZZ + λI)−1 = Ψ(Φ>Φ + λI)−1Φ

Suppose we have an exact preimage map ψ−1, a generated sample x∗ can be constructed as
x∗ = ψ−1(Ψ∗) = ψ−1(P̂Ek(·, z∗)), where z∗ ∼ pZ and Ψ∗ = P̂Ek(·, z∗) is called a transferred

sample in RKHS. We can show that µx∗ = E[ψ(x∗)] = µX , indicating a match in distribution

Image Generation

It can be hard to generative images due to the inaccurate preimages in high dimensional

space. However, data often lie on low-dimensional manifolds. Following [2], we generate high-

dimensional data by:

1. Train a regularized autoencoder (E,D) to learn a mapping to a low-dimensional latent space.
The regularization is used to encourage smoothness of the latent space

2. Construct kPF is using i.i.d. samples of the known distribution Z = {zi}i∈[n] ∼ pnZ and the
latent representations of the training data H = {E(xi)}i∈[n]

3. Compute the approximate preimages of the transferred samples h∗ ∼ ψ−1(Ψ∗) and output the
decoded image x∗ = D(h∗)

Figure 2:Image generation procedure for kPF

Experimental Results

We evaluated kPF on density approximation with toy distributions and unconditional generation

with popular CV datasets. Result: Better quality & more efficent than deep methods

Figure 3:Unconditional image generations

Glow‡ CAGlow‡ Vanilla WAE† 2-stage SRAEGlow SRAEGMM SRAERBF−kPF SRAENTK−kPF
VAE VAE (ours) (ours)

MNIST 25.8 26.3 13.7 20.4 18.3 23.7 16.7 21.7 21.5

CIFAR-10 - - 111.0 117.4 110.3 110.7 79.2 77.9 77.5

CelebA 103.7 104.9 52.1 53.7 44.7 59.8 42.0 41.9 41.0

Table 1:Comparative FID values. SRAE indicates an autoencoder with spherical latent space and spectral regularization following [2].

Results reported from ‡: [4]. †: [2].
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Figure 4:Density approximation on toy distributions

Small data setting: kPF is best suited for small datasets due to the super-quadratic cost to

compute the kernel inverse. We evaluated kPF on generating with few examples (<1% of the

CelebA dataset), and observed that kPF outperforms other deep methods by a large margin.

Additionally, we compared kPF to VAE on generating high-res brain MR images with <500

examples, and kPF yields sharper and statistically consistent samples.
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Figure 5:High-res brain MR image generations
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