Density Approximation in Deep Generative Models with Kernel Transfer Operators
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Motivation

Our work is based on an observation of decoder-based generative models, where a deterministic
operator is learned to map a simple, known distribution pz to the target data distribution py.
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Figure 1:Decoder based generative models can be viewed as discrete-time evaluations of a dynamical system

As observed in [1], decoders — discrete-time dynamical systems, which allows us to link gener-
ative models to well studied objects in dynamical systems, including the transfer operator.

Transfer Operator in Dynamical Systems

For a non-singular deterministic mapping f on a measure space (X, B, i) such that f(Z) ~ py,
the transfer operator (or Perron-Frobenius operator) P : ML (X) — M (X) is a linear operator in
the space of probability densities defined as
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With this definition, we have Ppz = py. Once we obtain P, we can use it to conveniently transfer
pz to py. Q: Can we learn ‘P directly for generative models? A: Can be challenging, but learning in
Reproducing Kenrel Hilbert Space (RKHS) helps.

= Requires rich basis functions — RKHS spanned by infinite bases
= Samples rather than densities — easy to compute empirical kernel mean embedding

= Cannot apply directly on samples — reproducing property of RKHS

Kernel Perron-Frobenius Operator (kPF)

|3] proposes an operator in RKHS that transfers the densities in the mean embedded form. De-
fine ¢(2) = k(-,2),¥(x) = (-, x) as the feature mappings of RKHS H and G. The kernel mean
embeddings (KME) of pz and py are given by

Mz = Ez~pz[¢(z>]a My — E:Cfvp)([w(xﬂ

Note that KME is injective for characteristic kernels. The kernel Perron-Frobenius operator Pg is
defined using the (uncentered) covariance/cross-covariance operators.

Pg — CZXCZ;J%W where CXZ — E(m,z)wpz7)([¢<x> ® ¢<Z)]’ CZZ — EZsz[gb(Z) & Qb(Z)]

We have puy = Pepz under certain conditions.

Main Result

In the context of generative modeling, we propose to use the empirical form of kPF to transfer
pz topy. Let & = [@(z;)];epn and ¥ = [¢h(2;));¢pp)- The empirical kPF is given by

Pe=Czx(Czz+ )T =0(@ 0+ A)"'0
Suppose we have an exact preimage map !, a generated sample z* can be constructed as

¥ = I (U*) = T (Pek(-, 2%)), where z* ~ pz and U* = Pek(-, z*) is called a transferred
sample in RKHS. We can show that p,+ = El(z*)] = py, indicating a match in distribution

Image Generation

It can be hard to generative images due to the inaccurate preimages in high dimensional
space. However, data often lie on low-dimensional manifolds. Following [2], we generate high-
dimensional data by:

1. Train a regularized autoencoder (E, D) to learn a mapping to a low-dimensional latent space.
The regularization is used to encourage smoothness of the latent space

2. Construct kPF is using i.i.d. samples of the known distribution Z = {z;};c[,,) ~ p’z and the
latent representations of the training data H = {E<xi)}i€[n]

3. Compute the approximate preimages of the transferred samples h* ~ ¢~ 1(0*) and output the
decoded image z* = D(h")

Step 2: Estimate KPF on latent space  Step 3: Generate new samples
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Step 1: Train a (regularized) AE

Experimental Results

Figure 2:Image generation procedure for kPF
We evaluated kPF on density approximation with toy distributions and unconditional generation
with popular CV datasets. Result: Better quality & more efficent than deep methods
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Figure 3:Unconditional image generations

Glow* CAGlow* Vanilla WAET 2-stage SRAEqy,,, SRAEcasas SRAERBE 1pr SRAENTK _1PR

VAE VAE (ours) (ours)
MNIST 25.8 26.3 13.7 204 18.3 23.7 16.7 21.7 21.5
CIFAR-10 - - 111.0 1174 1103 110.7 79.2 77.9 77.5
CelebA  103.7 104.9 521 53.7 44.7 59.8 42.0 41.9 41.0

Table 1:Comparative FID values. SRAE indicates an autoencoder with spherical latent space and spectral regularization following [2].

Results reported from §: [4]. 1: [2].
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Figure 4:Density approximation on toy distributions

Small data setting: kPF is best suited for small datasets due to the super-quadratic cost to
compute the kernel inverse. We evaluated kPF on generating with few examples (<1% of the
CelebA dataset), and observed that kPF outperforms other deep methods by a large margin.
Additionally, we compared kPF to VAE on generating high-res brain MR images with <500
examples, and kPF yields sharper and statistically consistent samples.

7

0.3 Data ‘
] _ \ 5 \
9 T 43 63 3 63 &3 &)
H- 1 VAE ‘
kKPF @ @ % % % @
VAE Glow RBF-kPF NTK-kPF Figure 5:High-res brain MR image generations
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