# Leveraging Unlabelled Data through Semi-supervised Learning to Improve the **Performance of a Marine Mammal Classification System**

Mark Thomas<sup>1,2,\*</sup>, Bruce Martin<sup>2</sup>, and Stan Matwin<sup>1,3</sup>

\*mark.thomas@dal.ca

<sup>1</sup>Dalhousie University <sup>2</sup>JASCO Applied Sciences <sup>3</sup>Polish Academy of Sciences

### Introduction

- One of the most common techniques used by marine biologists to determine presence/absence of marine mammals is Passive Acoustic Monitoring (PAM)
- PAM has lead to large quantities of data for which manual analysis is expensive and time consuming
- A considerable proportion ( $\approx$ 97%) of PAM data sets remain unanalyzed by human experts [2]

## **Acoustic Recordings**

- We make use of two PAM data sets collected by JASCO Applied Sciences
  - Set A "Bay of Fundy": used for model training/validation
  - Set B "Atlantic OCS": used during testing as a proxy for out-of-distribution examples



• We are particularly interested in the "pulse train" vocalization of minke whales



# **Semi-supervised Learning of PAM Data**

- We adapt the semi-supervised learning algorithm **MixMatch** [1] to leverage unlabeled data and improve the performance of a convolutional neural network (CNN) used to classify spectrograms containing minke whale vocalizations
- We replace the traditional image augmentation routines used in MixMatch with **SpecAugment** [3]



• The training data is highly unbalanced in favour of possible false alarms made by other species/sources:

|                            |           | Se       | et A       | Set B   |
|----------------------------|-----------|----------|------------|---------|
| Acoustic source            | shorthand | training | validation | testing |
| Minke whale pulse train    | MW        | 556      | 56         | 336     |
| Ambient noise              | AB        | 5560     | 620        | _       |
| Fin whale                  | FW        | 3383     | 422        | _       |
| Humpback whale             | HB        | 5773     | 597        | _       |
| North Atlantic right whale | RW        | 462      | 49         | _       |
| Non-biological noise       | NN        | -        | -          | 266     |
| Sei whale                  | SW        | -        | -          | 62      |

• The majority of the training data is unlabeled (20:1)



| <ul> <li>× Possible false alarm</li> <li>Pulse train</li> </ul> |           |
|-----------------------------------------------------------------|-----------|
|                                                                 | station 1 |
|                                                                 | station 2 |
|                                                                 | station 3 |
| 15 Nov '15                                                      |           |

# **Experimental Results**

- respectively
- lead to well-performing models
- the spectrograms

### Performance evaluated on Set A: Validation Set

Training paradigm Supervised Semi-supervised ( $\lambda_U$  =

### Performance evaluated on Set B: O.O.D. Examples

Training paradigm precision recall F-1 score 0.75213 0.75178 0.75195 Supervised Semi-supervised ( $\lambda_U = 10, \alpha = 0.5$ ) **0.89658 0.88799 0.89226** 

- more susceptible to training bias

## References

- Oliver, and Colin A Raffel.
- [2] Katie A Kowarski and Hilary Moors-Murphy. monitoring. Marine Mammal Science, 2020.
- Ekin D Cubuk, and Quoc V Le. recognition. *arXiv preprint arXiv:1904.08779, 2019.*



• Using a grid search we found well-performing values of the MixMatch hyperparameters  $\lambda_U$  and  $\alpha$  to be 10 and 0.5,

• Balanced SpecAugment masking hyperparameters were found to

• For our case we use two time masks and two frequency masks with maximum possible widths of roughly 10% the dimensions of

|                        | precision | recall  | F-1 score |
|------------------------|-----------|---------|-----------|
|                        | 0.79700   | 0.85807 | 0.82641   |
| = 10, $\alpha = 0.5$ ) | 0.81645   | 0.90301 | 0.85755   |

• The baseline model trained using only labeled data appears to be

• The performance of the semi-supervised model can generalize to acoustic data collected in distinct locations, at varying times and depths, and is less susceptible to unknown acoustic sources

[1] David Berthelot, Nicholas Carlini, Ian Goodfellow, Nicolas Papernot, Avital

Mixmatch: A holistic approach to semi-supervised learning.

In Advances in Neural Information Processing Systems, pages 5049--5059, 2019.

A review of big data analysis methods for baleen whale passive acoustic

[3] Daniel S Park, William Chan, Yu Zhang, Chung-Cheng Chiu, Barret Zoph,

Specaugment: A simple data augmentation method for automatic speech