DeepSMOTE: Deep Learning For Imbalanced Data
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Abstract

DeepSMOTE Design Training

DeepSMOTE is trained in an end-to-end fashion,
without a discriminator.

Imbalanced data is a significant challenge for modern
deep learning systemes.

Encoder / Decoder training
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The two main approaches to imbalanced data are:
modifying loss functions and resampling, which suffer
from limitations.

During training, an imbalanced dataset is input to
the encoder / decoder.

Imbalanced

Therefore, there is a need for a novel oversampling Data
method that is specifically tailored to deep learning, can

work on raw images and is capable of generating high-

quality output.
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A reconstruction loss is computed based on
batched data (which includes both majority and

Deep oversampling minority class examples).

We present DeepSMOTE, which generates information- 1 . = [1 Next, samplgs are drawn from the same class. .A
rich images without the need for a discriminator. L] 5 ' penalty loss is computed based on a permutation
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The penalty loss is based on the MSE difference
between D, and D,, D, and D,, etc., as if an image
(1,) was oversampled by SMOTE (I,; i.e., a
difference were calculated from the image’s
nearest neighbor). This step is designed to insert
variance into the encoding / decoding process.

Algorithm 1: DEEPSMOTE
Data:

DeepSMOTE has a simple, yet effective design:
 An encoder / decoder framework,
e SMOTE-based oversampling, and
* A dedicated loss function enhanced by a penalty term.

B: batches of imbalanced training
data B = {b1,b2,...,bn}
Input: hflcrdel parameters:

= {00, 01,...,0,}: Learning

Rate -

Output: Balanced training set.
Train the Encoder / Decoder:
for e +— epochs do

Experimental Results Summary

We propose DeepSMOTE, which
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oversampling and two GAN-based methods.

* Pixel-based methods performed much worse than deep learning
approaches. Only the MC-RBO method was able to deliver results not far
from GANSs.

* Although GAN-based methods performed better, DeepSMOTE
performed strongly against all 6 methods.

 We can also see that DeepSMOTE generated high-quality images.

(Generate Samples:
for i +— no. of minority classes do
C' + select(class data)
E + encode(C')
G+— SMOTE(E)
S + decode(G)

without the need for a complex
discriminator network, which is
commonly used by GAN-based
oversampling methods.
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