

RESEARCH

Abstract

Imbalanced data is a significant challenge for modern deep learning systems.

The two main approaches to imbalanced data are: modifying loss functions and resampling, which suffer from limitations.

Therefore, there is a need for a novel oversampling method that is **specifically tailored to deep learning**, can work on raw images and is capable of generating highquality output.

We present **DeepSMOTE**, which generates informationrich images without the need for a discriminator.

DeepSMOTE Algorithm

Algorithm 1: DEEPSMOTE

Data: B: batches of imbalanced training data $B = \{b_1, b_2, \dots, b_n\}$ Input: Model parameters: $\Theta = \{\Theta_0, \Theta_1, \dots, \Theta_j\};$ Learning Rate: α **Output:** Balanced training set. Train the Encoder / Decoder: for $e \leftarrow epochs$ do for $m \leftarrow B$ do $E_B \leftarrow encode(B)$ $D_B \leftarrow decode(E_B)$ $R_L = \frac{1}{n} \sum_{i=1}^{n} (D_B i - B_i)^2$ $C_D \leftarrow sample(class data)$ $E_S \leftarrow encode(C_D)$ $P_E \leftarrow$ $permute - order - of(E_S)$ $D_P \leftarrow decode(P_E)$ $P_L = \frac{1}{n} \sum_{i=1}^{n} (D_P i - C_{Di})^2$ $T_L = R_L + P_L$ $\Theta := \Theta - \alpha \frac{\partial T_L}{\partial \Omega}$ Generate Samples: for $i \leftarrow no$. of minority classes do $C \leftarrow select(class data)$

- $E \leftarrow encode(C)$
- $G \leftarrow SMOTE(E)$
- $S \leftarrow decode(G)$

DeepSMOTE: Deep Learning For Imbalanced Data

Damien Dablain¹, Bartosz Krawczyk², Nitesh Chawla¹

¹Department of Computer Science and Engineering, University of Notre Dame, IN, USA ²Department of Computer Science, Virginia Commonwealth University, Richmond, VA USA

Experimental Results

	MNIST			F	FMNIST			CIFAR			SVHN			CELEBA		
	ACSA	GM	F1	ACSA	GM	F1	ACSA	GM	F1	ACSA	GM	F1	ACSA	GM	F1	
SMOTE	81.48	83.99	82.44	67.94	74.84	67.12	28.02	50.08	29.58	70.18	76.33	71.80	60.29	70.48	60.03	
AMDO	84.29	88.73	84.88	74.90	80.89	75.39	31.19	53.99	32.44	71.94	78.52	73.06	63.54	72.86	62.94	
MC-CCR	86.19	92.04	86.46	78.58	86.17	79.03	32.83	56.68	33.91	72.01	80.94	74.26	65.23	77.14	64.88	
MC-RBO	87.25	94.46	88.69	80.06	88.02	80.14	33.01	59.15	35.83	74.20	82.97	74.91	67.11	80.52	65.37	
BAGAN	92.56	96.11	93.85	82.50	90.51	82.96	42.41	64.12	43.01	75.81	86.44	77.02	68.62	80.84	68.33	
GAMO	95.45	97.61	95.11	83.05	90.76	83.00	44.72	65.72	45.93	75.07	86.00	76.68	66.06	79.11	64.85	
DeepSMOTE	96.16	98.11	96.44	84.88	91.63	83.79	45.26	66.13	44.86	79.59	88.67	80.71	72.40	82.91	66.99	

- from GANs.

• 5 popular datasets, using 5-fold cross validation, against 4 pixel-based oversampling and two GAN-based methods.

• Pixel-based methods performed much worse than deep learning **approaches**. Only the MC-RBO method was able to deliver results not far

Although GAN-based methods performed better, **DeepSMOTE** performed strongly against all 6 methods.

• We can also see that DeepSMOTE generated high-quality images.

Training

DeepSMOTE is trained in an end-to-end fashion, without a discriminator.

During training, an imbalanced dataset is input to the encoder / decoder.

A reconstruction loss is computed based on batched data (which includes both majority and minority class examples).

Next, samples are drawn from the <u>same</u> class. A penalty loss is computed based on a permutation of the order of the samples (e.g., encode D_0 , D_1 , D_2 ...and decode D_1 , D_2 , D_0).

The penalty loss is based on the MSE difference between D_0 and D_1 , D_1 and D_2 , etc., as if an image (I_0) was oversampled by SMOTE $(I_1; i.e., a)$ difference were calculated from the image's nearest neighbor). This step is designed to **insert** variance into the encoding / decoding process.

Summary

We propose **DeepSMOTE**, which marries the **simplicity** of **shallow** learning (by incorporating SMOTE and metric learning) with deep architectures that work on complex data.

DeepSMOTE works in an end-to-end fashion, and generates high quality images that can be used for data augmentation and overcoming class imbalance.

Furthermore, it generates images without the need for a complex discriminator network, which is commonly used by GAN-based oversampling methods.