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Data-Efficient Training of Autoencoders for Mildly Non-Linear Problems

ABSTRACT
Principal Component Analysis (PCA) provides reliable
dimensionality reduction (DR) when data possesses linear
properties even for small datasets. However, faced with data that
exhibits non-linear behaviour, PCA cannot perform optimally as
compared to non-linear DR methods such as AutoEncoders. By
contrast, AutoEncoders typically require much larger datasets for
training than PCA. This data requirement is a critical impediment in
applications where samples are scarce and expensive to come by.
One such area is nanophotonics component design where
generating a single data point might involve running optimization
methods that use computationally demanding solvers.
We propose Guided AutoEncoders (G-AE), standard AutoEncoders
initialized using a numerically stable procedure to replicate PCA
behaviour before training.

Our results show this approach yields a marked reduction in the
data size requirements for training the network along with gains in
capturing non-linearity during dimensionality reduction and thus
performing better than PCA alone.

INTRODUCTION

• Optimal linear dimensionality reduction: PCA
(Principal Component Analysis). But non-linear
data ubiquitous.

• Example domain: nanophotonic component
design.

• Designing nanophotonic components requires
solving Maxwell’s PDEs to obtain field
distribution—computationally expensive.

• Can we benefit from PCA-like data efficiency
while introduce some degree of non-linearity?

• Our dataset of optimized structures for the
vertical grating coupler: 540 good designs (from
candidate 30,000+)

• 5 segment values(L₁-L₅) characterize design
• Melati et al.(2019): 2 principal components

capture most of good design subspace(Fig. 2a)
• Original design space slightly curved.(Fig. 2b)

CONCLUSION
• AutoEncoders, with proper initialization, offer

viable solution for dimensionality reduction in low
data regime.

• On small but sufficient datasets, use of PCA to
initialize LeakyReLU and PReLU AutoEncoders
yields results that are superior to randomly
initialized AutoEncoders, and even PCA alone.

• Results are encouraging in domains where only
PCA has been used to reduce the dimensionality
due to very limited datasets available.
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Figure 3. AutoEncoder Architecture used in Experiments

METHODOLOGY

• G-AE vase-shaped as in Figure 3.

• Experiment replicates low-data regime—only 50
training samples

• Data : 80% training, 10% validation, 10% test.
• Validation set used for early stopping.
• Test set compares performance across models.
• Experiments repeated 100 times with random

samplings for accurate statistics.
• Initializing with PCA yields optimal linear

AutoEncoder. Nonlinearity introduced gradually.
• Loss function: ℓ2-norm(input vector, image).

• Experiment 1 (LeakyReLU):
• All nodes: LeakyReLU activation function.
• set negative slope from 1 (linear) to 0.86

(mildly nonlinear) gradation: 0.01
• Train with PCA initialization vs random.
• Independent confirmation: measure

performance of all model types (AE, G-AE,
PCA) on larger oracle set.

• Std. error (shaded regions in graphs), shows
G-AE more stable than random initialization.

• Table 1: results of Experiment 2 using PReLU.
• Randomly initialized AE with PReLU performs

comparably to PCA, G-AE outperforms both.• Experiment 2 (PReLU):
• Same setup as Experiment 1 but Parametric

ReLU (PRELU) activation function used on all
nodes.

• Each node allowed to vary its slope
independently as a trainable parameter.

Figure 4 performance on (a) test set (b) oracle set

Figure 2 (a) good designs region (b) curvature of good 
design subspace

Table 1: Results of PReLU experiment

(a)

(b)

RESULTS
• Figure 4: performance of the model for

Experiment 1 on the test set (a) and on the
oracle set (b).

• G-AE outperforms randomly-initialized AEs and
PCA for variety of slopes.

• Randomly initialized AEs perform comparably or
worse than PCA.


