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ABSTRACT

Gaussian Processes (GPs) are known to provide accurate predictions and uncer-
tainty estimates in small-data settings by capturing similarity between data points
through their kernel function. However, traditional GP kernels do not work well
with high dimensional data points. A solution is to use a neural network to map data
to low dimensional embeddings before kernel computation. However, the huge data
requirement of neural networks makes this approach ineffective in small-data set-
tings. We solve the conflicting issues of representation learning and data efficiency,
by mapping high dimensional data to low dimensional probability distributions
using a probabilistic neural network and then computing kernels between these
distributions to capture similarity. We also derive a functional gradient descent ap-
proach to enable end-to-end training of our model. Experiments on various datasets
show that our approach outperforms the state-of-the-art in GP kernel learning.

1 INTRODUCTION

Huge labeled datasets (Deng et al., 2009) have played a key role in the recent success of deep learning
(Krizhevsky et al., 2012; Graves et al., 2013). However, in many emerging applications of machine
learning like materials science (Zhang et al., 2020) and poverty prediction (Jean et al., 2016) large
labeled training datasets may not be available leading to a drop in model accuracy. Additionally, deep
neural networks generally do not provide accurate uncertainty estimates, leading to over-confident
but incorrect predictions (Bulusu et al., 2020) in small-data settings.

Gaussian Processes (GPs) (Rasmussen, 2003) are non-parametric models that leverage correlation
(similarity) between data points to give a probabilistic estimate of the target values. Exploiting
similarity in a non-parametric fashion contributes to sample efficiency, while probabilistic estimation
helps to quantify model uncertainty in unlabeled regions of the input space. However, owing to the
curse of dimensionality, the number of points required to model the covariance using traditional GP
kernels grows exponentially with data dimension (Tripathy et al., 2016) which reduces their efficacy
in the small-data regime for high-dimensional data. The success of deep neural networks in learning
low dimensional representations of high dimensional data has led to works (Wilson et al., 2016)
that use a neural network to map data to a low dimensional latent space and then build a GP for
prediction on the latent space. However, owing to the huge data requirement of neural networks,
these approaches are also not as effective in learning latent representations in the small-data regime.

To enable data-efficient representation learning, we propose a new approach for learning highly
expressive GP kernels with small amounts of labeled data by mapping data points to probability
distributions in a latent space with a probabilistic neural network (Neal, 2012). This is motivated by
prior works showing that probabilistic models outperform deterministic models when the amount of
data is insufficient to capture the complexity of the task (Wilson & Izmailov, 2020; Gal, 2016). We
then use the theory of kernel embeddings of distributions (Muandet et al., 2017) to build expressive
kernels, and consequently GPs, on the latent probability distributions. To enable end-to-end learning,
we derive a functional gradient descent procedure for training the model via maximum likelihood
estimation of the distribution over model parameters. Results in Figure 1 show that our model, Deep
Probabilistic Kernel Learning (DPKL), outperforms baselines – Deep Kernel Learning (DKL) (Wilson
& Nickisch, 2015), and a GP with a Squared Exponential (SE) kernel, in terms of both prediction
error [lower Root Mean Squared Error (RMSE) in Figure 1a], and uncertainty quantification [lower
negative log-likelihood in Figure 1b] while learning meaningful embeddings [Figure 1c].
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(a) Accurate Prediction
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(b) Uncertainty Quantification
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(c) Representation Learning

Figure 1: Performance of our models and baselines for regression on the UCI (Lichman et al., 2013)
CTSlice Dataset (Dimensionality = 384) with n = {50, 100, 200, 300, 400, 500} labeled data points.
(a) Our approach DPKL, has significantly lower RMSE than conventional GPs and Deep Kernel
Learning (DKL). (b) DPKL also captures the data distribution much better (lower negative log
likelihood). (c) Points with similar target values have similar mean embeddings in the 2-D latent
space learned by DPKL with n = 100 labeled samples.

2 BACKGROUND AND RELATED WORK

Given n training points, X ∈ X ⊆ Rn×D, and targets, y ∈ Rn×1, our goal is to accurately predict
targets y∗ for test data points x∗ especially when there is limited training data (small n) and the
dimensionality (D) is large.

Gaussian Processes. A Gaussian Process (GP) (Rasmussen, 2003) defines a probability distribution
over functions H : Rd → R such that individual function values form a multivariate Gaussian
distribution i.e. H(X) = [H(x1), . . . ,H(xn)] ∼ N (µ,K) with entries of the mean vector given
by µi = µ(xi), and of the covariance matrix given by Kij = K(xi,xj). A GP is fully specified by
the mean function µ (typically µ ≡ 0) and the covariance kernel K (For eg. SE or Matern) which
measures similarity between data points. Data is also assumed to be corrupted by noise η ∼ N (0, σ2

η)

and the overall covariance is – Cov(H(xi), H(xj)) = K(xi,xj) + σ2
η1{i = j}. Given the training

data X and associated targets y, the predicted target valueH(x∗) at a test point x∗ follows a Gaussian
distribution, i.e. Pr(H(x∗)|X,y,x∗) = N (µ(x∗), σ

2(x∗)) where µ(x∗) = k∗
T (K+ σ2

η)
−1y and

σ2(x∗) = k∗∗ − k∗
T (K+ σ2

η)
−1k∗ with k∗ = K(X,x∗) and k∗∗ = K(x∗,x∗).

Deep Kernel Learning. Deep Kernel Learning (DKL) (Wilson et al., 2016) uses a neural network
to learn a GP kernel as Kij = K(gw(xi), gw(xj)) where K is a standard GP kernel and gw(.)
represents the neural network with parameters w which can be learned by minimizing the GP
negative log likelihood. While DKL provides greater flexibility than standard GP kernels, it inherits
the limitations of neural networks and requires a large amount of labeled data for accurate prediction.

Probabilistic Neural Networks. Probabilistic models learn a distribution over model parameters
thus incorporating uncertainty in predictive modeling which can improve generalization performance
particularly when there is insufficient data (Wilson & Izmailov, 2020). Unlike prior works (Graves,
2011) that train probabilistic or Bayesian Neural Networks (BNNs) for predictions, we use them
to improve the quality of low dimensional embeddings of high dimensional data. The probabilistic
embeddings given by our model serve as inputs to predictive models like GPs. Thus our approach
aims to improve GP kernel learning and not replace BNNs.

Other related work. Deep GPs (Damianou & Lawrence, 2013) seeks to improve the performance
of GPs in the big-data regime by hierarchically stacking multiple GPs. They are known to perform
worse than single layer GP for small datasets (Salimbeni & Deisenroth, 2017) while we show that
our model DPKL improves upon single layer GP in these settings. GPs on distribution inputs have
also been theoretically studied in (Bachoc et al., 2017; 2018). They assume that the input itself is a
distribution while we use neural networks to learn distributional embeddings of deterministic inputs.
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3 DEEP PROBABILISTIC KERNEL LEARNING

We briefly describe our model – Deep Probabilistic Kernel Learning (DPKL) (further details in
Appendix A). DPKL predicts output y ∈ R given input x ∈ X ⊆ RD using a Gaussian Process (GP)
learned over probability distributions in a low dimensional latent space Z ⊆ Rd (d << D) where
distributions in Z are obtained by passing the input data through a probabilistic neural network.

Probabilistic Latent Space Mapping. Each data point x passes through a probabilistic neural
network with parameters W ∼ p(W) to give a random variable Z = gW(x) ∈ Z . Thus a point xi
is represented by the latent distribution p(Z|xi) due to the stochasticity of W.

GP Regression over Latent Distributions. We assume a GP prior H ∼ GP(0,K) over target
functions H which take distributions p(Z|xi) as input and output ŷi, an estimate of the true label yi.
K is the kernel matrix which models covariance between GP inputs (probability distributions). Given
any two probability distributions p(Z|xi) and p(Z|xj), the corresponding entry of K is given by
Kij = Ez∼p(Z|xi), z′∼p(Z|xj)[k(z, z

′)]. Here k can be any standard kernel like the SE kernel. This
choice of kernel between probability distributions follows previous works (Muandet et al., 2012;
2017) which use similar kernels to build predictive models, such as, SVMs, with distribution inputs.
We expect that probability distributions in the latent space Z will better capture uncertainty due to
scarcity of training data than point embeddings. Hence, we perform GP regression over distributions
in Z .

Training Algorithm. The forward pass described above is used to compute the kernel between data
points and consequently the predicted GP mean and variance for test data (see section 2). To train the
model we need to find the optimal distribution p(W) over its parameters in this setting.

Since the latent embedding Z for a data point x is given by Z = gW(x), W ∼ p(W), we can
express the entries of the kernel matrix as

Kij = Ew,w′∼p(W)[k(gw(xi), gw′(xj))] = Kij [p] (1)

We can view Kij as a functional of p(W). The overall data likelihood is then also a functional of p
and the negative log likelihood is given by (see (Rasmussen, 2003))

L[p] = − log Pr(y|X, p(W)) =
1

2
yT (K[p] + σ2I)−1y +

1

2
log(det(K[p] + σ2I)) (2)

where det(A) denotes the determinant of a matrix A.

Thus a maximum likelihood estimate, p∗(W), of the distribution over model parameters is given by

p∗(W) = argmin
p(W)∈P

L[p] (3)

where P is the class of distributions in which we seek p∗.

The choice of P is critical to the success of this approach. Following Liu & Wang (2016), we choose
P to be P = {p(u)|u = w+ s(w),w ∼ p0(w), s ∈ Hκ} whereHκ is a RKHS given by a kernel κ
between model parameters w (note that this is different from the kernel k between latent embeddings
in Equation (1)). This choice of P includes all smooth transformations u = w + s(w) of samples
w drawn from an initial distribution p0(w), and the optimization problem in (3) now reduces to
computing the optimal shift s∗(w). Next, we provide an expression for the functional gradient of the
negative log-likelihood under our model with respect to the shift s.

Proposition 1. If we draw m realizations of model parameters w1, . . . ,wm ∼ p(w), p ∈ P , then

∇sL |s=0 '
m∑
l=1

κ(wl, .)∇wl
L̂(w1, . . . ,wm) (4)

where L̂ is given by substituting K̂ij =
1
m2

∑
l,l′ k(gwl

(xi), gwl′ (xj)) in Equation (2).

To estimate the optimal shift, s∗ (or optimal distribution p∗) we draw an initial set of parameters
w1, . . . ,wm ∼ p0(w) and iteratively apply the functional gradient descent transformation u =
w − ε∇sL |s=0 as described in Algorithm 1 in Appendix A.
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(a) RMSE for CTSlice (D = 384)
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(b) RMSE for Buzz (D = 77)

100 200 300 400 500
Number of labeled samples

3

4

5

6

R
M

S
E

GP

DKL

DPKL

(c) RMSE for Parkinsons (D = 20)
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(d) Negll for CTSlice (D = 384)
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(e) Negll for Buzz (D = 77)
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(f) Negll for Parkinsons (D = 20)

Figure 2: Results for regression on 3 UCI Datasets with n = {50, 100, 200, 300, 400, 500} labeled
samples. Plots (a) - (c) show that DPKL has lower RMSE than baselines - DKL(Wilson et al.,
2016) and GP. Plots (d) - (f) show that DPKL quantifies uncertainty better (lower average negative
log-likelihood (Negll) of test data). See Appendix B for results on more datasets.

4 EXPERIMENTAL RESULTS

We apply our model, DPKL, to regression tasks in the small data regime on 6 datasets of varying
dimensionality from the UCI repository (Lichman et al., 2013). We compare DPKL to DKL (Wilson
et al., 2016) (which uses a deterministic neural network to map data into the latent space), and a
simple GP which uses a Squared Exponential (SE) kernel directly on the data. The lengthscales for
the GP SE kernel, and the neural network weights in DKL are optimized using gradient descent
on the negative log-likelihood while the distribution over neural network weights in DPKL is
optimized using functional gradient descent as described in Section 3. For each dataset we use
n = {50, 100, 200, 300, 400, 500} labeled examples. Additional details are in Appendix B.

Figure 2 shows results for 3 datasets. Clearly DPKL has lower prediction error (lower RMSE) than
DKL and GP for all datasets. The improvements in the high dimensional datasets CTSlice (D = 384)
and Buzz (D = 77), clearly illustrate the advantages of our approach in high dimensional settings.
Moreover, our approach also provides better uncertainty quantification measured by the average
negative log likelihood of test data (Lakshminarayanan et al., 2017). A lower negative log likelihood
implies that the model fits the test data better. Results in Figure 2 shows that by projecting data to
latent probability distributions DPKL consistently outperforms DKL and GP in this metric.

5 CONCLUSION

We proposed a new approach for small-data learning that maps high dimensional data to low di-
mensional probability distributions and then performs GP regression on these distributions. The
distribution over model parameters is learned via functional gradient descent. Our model outper-
forms several baselines in GP regression while learning a meaningful representation of the data
and accurately quantifying uncertainties on test data. In future, we plan to theoretically analyze the
convergence of our approach, seek potential improvements through optimal kernel selection and
unbiased gradient estimation, and apply our model to areas like Bayesian Optimization (Brochu et al.,
2010) where GPs have been successful in the past.
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