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ABSTRACT

Adversarial examples causing evasive predictions are widely used to evaluate and
improve the robustness of machine learning models. However, current studies
focus on supervised learning tasks, relying on the ground-truth data label, a tar-
geted objective, or supervision from a trained classifier. In this paper, we propose
a framework of generating adversarial examples for unsupervised models and
demonstrate novel applications to data augmentation. Our framework exploits a
mutual information neural estimator as an information-theoretic similarity measure
to generate adversarial examples without supervision. We propose a new MinMax
algorithm with provable convergence guarantees for efficient generation of unsu-
pervised adversarial examples. When using unsupervised adversarial examples as
a simple plug-in data augmentation tool for model retraining, significant improve-
ments are consistently observed across different unsupervised tasks and datasets,
including data reconstruction, representation learning, and contrastive learning.

1 INTRODUCTION

Adversarial examples are known as prediction-evasive attacks on state-of-the-art machine
learning models (e.g., deep neural networks), which are often generated by manipulat-
ing native data samples while maintaining high similarity measured by task-specific met-
rics such as Lp-norm bounded perturbations Goodfellow et al. (2015); Biggio & Roli
(2018). Due to the implications and consequences on mission-critical and security-centric
machine learning tasks, adversarial examples are widely used for robustness evaluation of a
trained model and for robustness enhancement during training (i.e., adversarial training).

Table 1: Illustration of adversarial examples for supervised
and unsupervised machine learning tasks. Both settings
use a native data sample x as reference. For supervised
setting, adversarial examples refer to similar samples of x
causing inconsistent model predictions. For unsupervised
setting, adversarial examples refer to dissimilar samples
yielding smaller loss in reference to x, which can be inter-
preted as generalization errors on low-loss samples.

(I) Mathematical notation

M sup/M unsup: trained supervised/unsupervised machine learning models
x/xadv: original/adversarial data sample
`sup
x /`unsup

x : supervised/unsupervised loss function in reference to x

(II) Supervised tasks
(e.g. classification)

(III) Unsupervised tasks (our proposal)
(e.g. data reconstruction, contrastive learning)

xadv is similar to x but
M sup(xadv) 6= M sup(x)

xadv is dissimilar to x but
`unsup
x (xadv|M unsup) ≤ `unsup

x (x|M unsup)

Despite of a plethora of adversarial at-
tacking algorithms, the design principle
of existing methods is primarily for su-
pervised learning models — requiring
either the true label or a targeted objec-
tive (e.g., a specific class label or a refer-
ence sample) for generating adversarial
examples. Some recent works have ex-
tended to the semi-supervised setting, by
leveraging supervision from a classifier
(trained on labeled data) and using the
predicted labels on unlabeled data for
generating (semi-supervised) adversarial
examples Miyato et al. (2018); Zhang
et al. (2019); Stanforth et al. (2019); Car-
mon et al. (2019). On the other hand,
recent advances in unsupervised and few-
shot machine learning techniques show that task-invariant representations can be learned and con-
tribute to downstream tasks with limited or even without supervision Ranzato et al. (2007); Zhu &
Goldberg (2009); Zhai et al. (2019), which motivates this study regarding their robustness. Our goal
is to provide efficient robustness evaluation and data augmentation techniques for unsupervised (and
self-supervised) machine learning models through unsupervised adversarial examples (UAEs). Table
1 summarizes the fundamental difference between conventional supervised adversarial examples and
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our UAEs. Notably, our UAE generation is supervision-free because it solely uses an information-
theoretic similarity measure and the associated unsupervised learning objective function. It does not
use any supervision such as label information or prediction from other supervised models.

In this paper, we aim to formalize the notion of UAE, establish an efficient framework for UAE
generation, and demonstrate the advantage of UAEs for improving a variety of unsupervised machine
learning tasks. We summarize our main contributions as follows.
• We propose a new per-sample based mutual information neural estimator (MINE) between a
pair of original and modified data samples as an information-theoretic similarity measure and a
supervision-free approach for generating UAE. For instance, see UAEs for data reconstruction in
Figure 2 of supplementary material.
•We formulate the generation of adversarial examples with MINE as a constrained optimization
problem, which applies to the unsupervised machine learning task. We then develop an efficient
MinMax optimization algorithm (Algorithm 2).
• We show a novel application of UAEs as a simple plug-in data augmentation tool for several
unsupervised machine learning tasks, including data reconstruction, representation learning, and
contrastive learning on image and tabular datasets. Our extensive experimental results show outstand-
ing performance gains (up to 73.5% performance improvement) by retraining the model with the
generated UAEs.

2 METHODOLOGY

2.1 MINE OF SINGLE DATA SAMPLE AND MINE-BASED MINMAX ATTACK ALGORITHM

Mutual information (MI) measures the mutual dependence between two random variables X and Z.
For efficient computation of MI, the mutual information neural estimator (MINE) with consistency
guarantees is proposed in Belghazi et al. (2018). However, the vanilla MINE is not applicable
because it only applies to a batch of data samples (so that empirical data distributions can be
used for computing MI estimates) but not to single data sample. To bridge this gap, we will
propose two MINE-based sampling methods for single data sample denoted as the per-sample MINE
IΘ(x, x+ δ): (1) random sampling and (2) convolution output. (1) Random Sampling: we perform
independent Gaussian sampling of a given data sample x to obtain a batch of K compressed samples
{xk, (x + δ)k}Kk=1 for computing IΘ(x, x + δ) via MINE. (2) Convolution output: we propose
to use the output of the first convolution layer of a data input, denoted by conv(·), to obtain K
feature maps {conv(x)k, conv(x+ δ)k}Kk=1 for computing IΘ(x, x+ δ) based on the neural network
model using a convolution layer to process the input data. We show the comparison between random
sampling and convolution output and more detail of them in Appendix B.1 and B.2. In this paper we
use convolution-based approach whenever applicable and otherwise use random sampling.

Many machine learning tasks such as data reconstruction and unsupervised representation learning
do not use data labels. Here we use an autoencoder Φ(·) for data reconstruction to illustrate the
unsupervised attack formulation. The design principle can naturally extend to other unsupervised
tasks. The autoencoder Φ takes a data sample x as an input and outputs a reconstructed data sample
Φ(x). Different from the rationale of supervised attack, for unsupervised attack we propose to use
MINE to find the least similar perturbed data sample x + δ with respect to x while ensuring the
reconstruction loss of Φ(x + δ) is no greater than Φ(x) (i.e., the criterion of successful attack for
data reconstruction). The unsupervised attack formulation is as follows:

Minimize
δ

IΘ(x, x+ δ)

such that x+ δ ∈ [0, 1]d , δ ∈ [−ε, ε]d and f unsup
x (x+ δ) ≤ 0

which means the attack is considered successful (i.e., f unsup
x (x + δ) ≤ 0) if the reconstruction

loss of x+ δ relative to the original sample x is smaller than the native reconstruction loss minus a
nonnegative margin κ. That is, ‖x−Φ(x+δ)‖2 ≤ ‖x−Φ(x)‖2−κ. In other words, our unsupervised
attack formulation aims to find that most dissimilar perturbed sample x+ δ to x measured by MINE
while having smaller reconstruction loss (in reference to x) than the that of x. Such UAEs thus relates
to generalization errors on low-loss samples.

Here we propose a unified MinMax algorithm for solving the aforementioned unsupervised attack
formulation. For simplicity, we will use fx to denote the attack criterion for f unsup

x . We reformulate
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Table 2: Comparison of data reconstruction by retraining the autoencoder on the UAE-augmented
data. The reconstruction error is the average L2 reconstruction loss of the test set. The improvement
(in green/red) is with respect to the original model. The attack success rate (ASR) is the fraction of
augmented training data having smaller reconstruction loss than the original loss (see Table 1 for
definition).

MNIST

Reconstruction Error (test set) ASR (training set)

Autoencoder Original MINE-UAE L2-UAE GA
(σ = 0.01)

GA
(σ = 10−3) MINE-UAE L2-UAE GA

(σ = 0.01)
GA

(σ = 10−3)

Sparse 0.00561 0.00243
(↑ 56.7%)

0.00348
(↑ 38.0%)

0.00280±2.60e-05
(↑ 50.1%)

0.00280±3.71e-05
(↑ 50.1%) 100% 99.18% 54.10% 63.95%

Dense 0.00258 0.00228
(↑ 11.6%)

0.00286
(↓ 6.0%)

0.00244±0.00014
(↑ 5.4%)

0.00238±0.00012
(↑ 7.8%) 92.99% 99.94% 48.53% 58.47%

Convolutional 0.00294 0.00256
(↑ 12.9%)

0.00364
(↓ 23.8%)

0.00301±0.00011
(↓ 2.4%)

0.00304±0.00015
(↓ 3.4%) 99.86% 99.61% 68.71% 99.61%

Adversarial 0.04785 0.04581
(↑ 4.3%)

0.06098
(↓ 27.4%)

0.05793±0.00501
(↓ 21%)

0.05544±0.00567
(↓ 15.86%) 98.46% 43.54% 99.79% 99.83%

SVHN

Sparse 0.00887 0.00235
(↑ 73.5%)

0.00315
(↑ 64.5%)

0.00301±0.00137
(↑ 66.1%)

0.00293±0.00078
(↑ 67.4%) 100% 72.16% 72.42% 79.92%

Dense 0.00659 0.00421
(↑ 36.1%)

0.00550
(↑ 16.5%)

0.00858±0.00232
(↓ 30.2%)

0.00860±0.00190
(↓ 30.5%) 99.99% 82.65% 92.3% 93.92%

Convolutional 0.00128 0.00095
(↑ 25.8%)

0.00121
(↑ 5.5%)

0.00098 ± 3.77e-05
(↑ 25.4%)

0.00104±7.41e-05
(↑ 18.8%) 100% 56% 96.40% 99.24%

Adversarial 0.00173 0.00129
(↑ 25.4%)

0.00181
(↓ 27.4%)

0.00161±0.00061
(↑ 6.9%)

0.00130±0.00037
(↑ 24.9%) 94.82% 58.98% 97.31% 99.85%

the attack generation via MINE as the following MinMax optimization problem with simple convex
set constraints:

Min
δ:x+δ∈[0,1]d, δ∈[−ε,ε]d

Max
c≥0

F (δ, c) , c · f+
x (x+ δ)− IΘ(x, x+ δ)

The outer minimization problem finds the best perturbation δ with data and perturbation feasibility
constraints x + δ ∈ [0, 1]d and δ ∈ [−ε, ε]d, which are both convex sets with known analytical
projection functions. The inner maximization associates a variable c ≥ 0 with the original attack
criterion fx(x + δ) ≤ 0, where c is multiplied to the ReLU activation function of fx, denoted as
f+
x (x+δ) = ReLU(fx(x+δ)) = max{fx(x+δ), 0}. The use of f+

x means when the attack criterion
is not met (i.e., fx(x+ δ) > 0), the loss term c · fx(x+ δ) will appear in the objective function F .
On the other hand, if the attack criterion is met (i.e., fx(x+ δ) ≤ 0), then c · f+

x (x+ δ) = 0 and the
objective function F only contains the similarity loss term −IΘ(x, x+ δ). Therefore, the design of
f+
x balances the tradeoff between the two loss terms associated with attack success and MINE-based

similarity. We propose to use alternative projected gradient descent between the inner and outer steps
to solve the MinMax attack problem, which is summarized in Algorithm 2 (see Appendix B.3).

2.2 DATA AUGMENTATION USING UAE

With the proposed MinMax attack algorithm and per-sample MINE for similarity evaluation, we
can generate MINE-based unsupervised adversarial examples (UAEs). Section 3 will show novel
applications that MINE-based UAEs can be used as a simple plug-in data augmentation tool to boost
the model performance of several unsupervised machine learning tasks.

3 RESULTS

In this section, we conduct extensive experiments on a variety of datasets and neural network models
to demonstrate the performance of our proposed MINE-based MinMax adversarial attack algorithm
and the utility of its generated UAEs for data augmentation. The detail of experiment setup and
datasets sees in the supplementary material.

UAE Improves Data Reconstruction. Data reconstruction using an autoencoder Φ(·) that learns to
encode and decode the raw data through latent representations is a standard unsupervised learning
task. Here we use the default implementation of the four different autoencoders to generate UAEs
based on the training data samples of MNIST and SVHN for data augmentation, retrain the model
from scratch on the augmented dataset, and report the resulting reconstruction error on the original
test set. All autoencoders use the L2 reconstruction loss defined as ‖x− Φ(x)‖2. We provide more
details about the model retraining on augmented data in the supplementary material.

We also compare the performance of our proposed MINE-based UAE (MINE-UAE) with two
baselines: (i) L2-UAE that replaces the objective of minimizing IΘ(x, x+ δ) with maximizing the
L2 reconstruction loss ‖x − Φ(x + δ)‖2 in the MinMax attack algorithm while keeping the same
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attack success criterion. (ii) Gaussian augmentation (GA) that adds zero-mean Gaussian noise with a
diagonal covariance matrix of the same constant σ2 to the training data.

We observe significant and consistent performance improvement in data reconstruction (up to 73.5%
improvement) in Table 2. Table 2 shows the reconstruction loss and the ASR. The improvement of
reconstruction error is measured with respect to the reconstruction loss of the original model (i.e.,
without data augmentation). We find that MINE-UAE can attain much higher ASR than L2-UAE and
GA in most cases. More importantly, data augmentation using MINE-UAE achieves consistent and
significant reconstruction performance improvement across all models and datasets (up to 56.7% on
MNIST and up to 73.5% on SVHN), validating the importance and effectiveness of using MINE-
UAE for data augmentation. On the other hand, in several cases L2-UAE and GA lead to notable
performance degradation. The results suggest that MINE-UAE can be an effective and plug-in data
augmentation tool for unsupervised machine learning models, as it simply uses the training data and
the original model to generate UAEs for model retraining. Moreover, we compare MINE-UAE to
other data augmentation methods such as flipping and rotation in Appendix B.5. UAE can improve
data reconstruction when the original model involves augmented training data.

Table 3: Performance evaluation of representation learning
by the concrete autoencoder and the resulting classifica-
tion accuracy.

Reconstruction Error (test set) Accuracy (test set) ASR

Dataset Original MINE-UAE Original MINE-UAE MINE-UAE

MNIST 0.01170 0.01142 (↑ 2.4%) 94.97% 95.41% 99.98%
Fashion MMIST 0.01307 0.01254 (↑ 4.1%) 84.92% 85.24% 99.99%

Isolet 0.01200 0.01159 (↑ 3.4%) 81.98% 82.93% 100%
Coil-20 0.00693 0.01374 (↓ 98.3%) 98.96% 96.88% 9.21%

Mice Protein 0.00651 0.00611 (↑ 6.1%) 89.81% 91.2% 40.24%
Activity 0.00337 0.00300 (↑ 11.0%) 83.38% 84.45% 96.52%

UAE Improves Representation Learn-
ing. The concrete autoencoder proposed
in Balın et al. (2019) is an unsupervised
feature selection method which recog-
nizes a subset of the most informative
features through an additional concrete
select layer withM nodes in the encoder
for data reconstruction. We apply MINE-
UAE for data augmentation on a variety
of datasets and use the same post-hoc classification evaluation procedure as in Balın et al. (2019)
for the learned representations, which passes the selected features to an extremely randomized tree
classification model Geurts et al. (2006).

The six datasets and the resulting classification accuracy are reported in Table 3. We select M = 50
features for every dataset except for the Mice Protein dataset (we set M = 10) owing to its small data
dimension. We find that MINE-UAE can attain up to 11% improvement for data reconstruction and
up to 1.39% increase in accuracy among 5 out of 6 datasets, corroborating the utility of MINE-UAE
in representation learning and feature selection.

Table 4: Comparison of contrastive loss and
the resulting accuracy on CIFAR-10 using
SimCLR Chen et al. (2018). The attack suc-
cess rate (ASR) is the fraction of augmented
training data having smaller contrastive loss
than the original loss. The SimCLR model is
ResNet-18 and the batch size is set to be 512.

CIFAR-10

Model Loss (test set) Accuracy (test set) ASR

Original 0.29010 91.30% -
MINE-UAE 0.26755 (↑ 7.8%) 92.88% 100%

UAE Improves Contrastive Learning. The Sim-
CLR algorithm Chen et al. (2018) is a new framework
for contrastive learning of visual representations. It
uses self-supervised data modifications for efficient
contrastive learning and is shown to improve several
downstream image classification tasks.

We use the default implementation of SimCLR on
CIFAR-10 and generate MINE-UAEs using the train-
ing data and the defined contrastive training loss for
SimCLR. Table 4 shows the loss, ASR and the result-
ing classification accuracy using a linear classifier on
the learned representations. We find that using MINE-UAE for additional data augmentation and
model retraining can yield 7.8% improvement in contrastive loss and 1.58% increase in classification
accuracy, suggesting advanced contrastive learning performance. Moreover, we find that MINE-UAE
data augmentation also leads to a significant gain in adversarial robustness (see Appendix B.11).

4 CONCLUSION

In this paper, we propose a novel framework for studying adversarial examples in unsupervised learn-
ing tasks, based on our developed per-sample mutual information neural estimator as an information-
theoretic similarity measure. We also propose a new MinMax algorithm for efficient generation of
MINE-based unsupervised adversarial examples. As a novel application, we show that MINE-based
UAEs can be used as a simple yet effective plug-in data augmentation tool and achieve significant
performance gains in data reconstruction, representation learning, and contrastive learning.
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