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ABSTRACT

Generative models which use explicit density modeling (e.g., variational autoen-
coders, flow-based generative models) often involve finding the optimal mapping
(i.e., transfer operator) from a known distribution, e.g. Gaussian, to the input
(unknown) distribution. This often requires searching over a class of non-linear
functions (e.g. functions that can be represented by a deep neural network). While
effective in practice, the associated computational/memory costs can increase
rapidly, usually as a function of the performance that is desired in an application.
We propose a substantially cheaper (and simpler) distribution matching strategy by
leveraging recent developments in neural kernels together with ideas from known
results on kernel transfer operators. We show that our formulation enables highly
efficient distribution approximation and sampling, and offers empirical perfor-
mance that compares very favorably with powerful baselines, but with significant
savings in runtime. We show that the algorithm also performs well in the small
sample size settings.

1 INTRODUCTION

Given i.i.d. samples of the dataX with an unknown density pX , most generative modeling approaches
seek to estimate or derive a parametric density function pθ that closely resembles properties of pX .
Ideally, one hopes that pθ = pX and therefore samples drawn from pθ will closely resemble the
training data X . In modern deep generative models, one often approaches this question by utilizing a
latent space. That is, we assume that there is some latent variable Z associated with the observed
data X that follows a known distribution pZ (e.g., isotropic Gaussian).

Consider generative models with an explicit decoder or generator structure, for instance, generative
adversarial networks (GANs) Goodfellow et al. (2014) or variational autoencoders (VAEs) Kingma &
Welling (2013). The parameterized empirical density pτ (X) can be written as

∫
pτ (X|Z)p(Z)dz

where Z is the latent variable with a suitable prior and the conditional density pτ (X|Z) is usually
modeled with a multi-layer perceptron or a convolutional neural network. Such a decoder shapes
(or non-linearly transforms) a simple prior distribution pz into a complex pX . Training a generative
model of this form will involves a numerical optimization over an appropriate loss function, e.g.,
associated with the likelihood Kingma & Welling (2013).

In both examples above, the goal is to find an appropriate parameter τ such that pτ marginalized
over Z satisfies pτ ··∼ pX . At a high level, given the data variable X ∈ X distributed according to
some unknown distribution pX , a key piece of the workflow in deep generative models is to learn a
mapping (or transformation) or a forward operator as defined below.
Definition 1.1 (Forward operator). A forward operator f∗ ∈ C : Z → X is defined to be a mapping
associated with some latent variable Z ∈ Z ∼ pZ such that f∗ = arg minf∈Cd(pf(Z), pX) for some
function class C and distance measure d.

The starting point of our work is to evaluate the extent to which we can radically simplify the forward
operator for density approximation in deep generative models – based on directly using or re-purposing
existing results in a manner that we still obtain satisfactory empirical performance. Consider an
axiomatic description of a forward operator (as defined in (1.1) based on the following reasonable
properties: (a) Upon convergence, the learned operator f minimizes the distance/divergence between
pX and pf(Z) over all possible operators of a certain class. (b) The training procedure directly learns
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the mapping from the prior distribution, rather than an approximation. (c) The forward operator f is
efficient both for training and inference.

It would appear that the above list of criteria violates the “no free lunch rule”, and some compromise
must be involved. Our goal is to investigate precisely this trade-off and the design choices that are
needed to make it work. Specifically, a well studied result in dynamical systems, namely the existence
of a Perron-Frobenius operator Lemmens & Nussbaum (2012), suggests an alternative linear route
to model the forward operator. As we will discuss shortly, we show that bringing together recent
results in neural kernels and kernel transfer operators, the forward operator in generative models can
be efficiently approximated as the estimation of a closed-form linear operator in the reproducing
kernel Hilbert space (RKHS).

Notations used Meaning
Z X , Random variable
Z X , Domain
pZ pX , Density function
k l , Kernel function
H G , RKHS

φ(z) k(z, ·) ψ(x) l(x, ·) , feature map
Ek El , Mean embedding

operator
µZ EkpZ µX ElpX , Kernel mean

embedding

Table 1: Commonly used notations in this paper.

Contributions. Our results are largely
based on the existing literature in kernel
methods and dynamical systems, but we
demonstrate their relevance in generative
modeling and complement recent results that
emphasize the links between deep generative
models and dynamical systems. Our main
contributions are (i) We propose a simple
framework for transferring a known prior
density linearly to an unknown data density
in RKHS, which is equivalent to learning
a nonlinear forward operator in the input
space. (ii) We empirically evaluate this idea
in multiple density approximation scenarios
and show very competitive performance for
image generation tasks on popular datasets
including CelebA and also show its use for generative modeling tasks in a small sample size setting.

2 SIMPLIFYING FORWARD OPERATOR ESTIMATION

Forward operator as a dynamical system: Viewing the forward operator f∗ as a (determinis-
tic) continuous dynamical systems is similar to how flow-based generative models are considered
explicitly as a continuous dynamical system in Neural ODE Chen et al. (2018). As a simple il-
lustration, the dynamics on an element z(t0) ∈ X by applying f∗ is governed by the system
x = z(t0) +

∫ t1
t0

∆t(z(t))dt. Integrating the RHS by g∗(z(t0)) =
∫ t1
t0

∆t(z(t))dt. The forward
operator f∗ = (I + g∗) : X → X , therefore, controls the discrete evolution of z(t0) at time t1
as x = f∗(z(t0)). The marginal density over a subset of the state space Λ ⊆ X can therefore be
expressed as

∫
Λ
pX(x)dx =

∫
z∈f∗−1(Λ)

pZ(z)dz.

Towards a one-step estimation of forward operator: Both f∗ and f∗−1 are usually highly nonlin-
ear functions. Learning f∗ in general requires searching in a large space of nonlinear functions (e.g.,
possible functions represented by a given neural network architecture) and sometimes evaluations
of the RHS integral or its lower bound (i.e., ELBO in VAE and exact likelihood in flow), which
can both be expensive in practice. Nevertheless, the dynamical systems literature suggests a linear
extension of the transformation of pZ , namely the Perron-Frobenius operator or transfer operator,
that conveniently transfers pZ to pX .
Definition 2.1 (Perron-Frobenius operator Mayer (1980)). The Perron-Frobenius (PF) operator
P : L1(X ) → L1(X ) is an infinite-dimensional linear operator defined as

∫
Λ

(PpZ)(x)dx =∫
z∈f−1(Λ)

pZ(z)dz for all Λ ⊆ X .

With this definition of the PF operator, P , we have pX = PpZ . If we assume that such an operator
can be efficiently estimated, we can use it to transfer the tractable probability density pZ to the target
density pX . However, since P is an infinite-dimensional operator on L1(X ), it is impractical to
instantiate it explicitly and exactly.

Kernel embedded form of the PF operator: A natural extension or variation that has been explored
Klus et al. (2020) is to representP by an infinite set of functions, say by mapping the given distribution
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into an infinite dimensional space of functions through the kernel trick. There, for a characteristic
kernel l, the kernel mean embedding uniquely identifies an element µX ∈ G for pX ∈ L1(X ).
Therefore, solving the dynamics of pZ in its embedded form allows approximating P with an infinite
basis. Recent literatures suggest such a linear operator in RKHS that defines the dynamics between
two embedded densities.

Definition 2.2 (Embedded Perron-Frobenius operator Klus et al. (2020)). Given pX ∈ L1(X )
and pZ ∈ L1(X ). Let µX = ElpX and µZ = EkpZ be their corresponding mean kernel
embeddings. The kernel Perron-Frobenius (kPF) operator, denoted by PE : H → G, is de-
fined as µX = PEµZ = CXZC

−1
ZZµZ under the following conditions: (i) CZZ is injective

(ii) µt ∈ Range(CZZ) (iii) E[g(X)|Z = ·] ∈ H for any g ∈ G.

Transferring embedded densities with the PF operator: The embedded PF operator is a powerful
tool that allows transferring the embedded densities in RKHS. Further, the commutativity between
the (embedded) PF operator and the mean embedding operator is given in Klus et al. (2020), showing
the equivalence of PE to P when l is characteristic.

In practice with finite data, {xi}i∈[n] ∼ Xn and {zi}i∈[n] ∼ Zn, PE is given by its empiri-
cal estimate P̂E = ĈXZĈ

−1
ZZ = Ψ(ΦTΦ + λnI)−1ΦT where Φ = [k(z1, ·), · · · , k(zn, ·)],Ψ =

[l(x1, ·), · · · , l(xn, ·)] are the feature matrices corresponding to samples of X and Z. Error analysis
of this estimate is described in Klus et al. (2020).

Mapping Z to G: Let us define φ(z) = k(z, ·) and ψ(x) = l(x, ·) as the feature maps of kernels k
and l. We can rewrite µX as

µX = PEEkpZ = PEEZ [φ(Z)] = EZ [PE(φ(Z))] = EZ [l
(
ψ† (PEk (Z, ·)) , ·

)
] (1).

Here ψ† is the inverse, or preimage map, of ψ. Such an inverse, in general, may not exist. In most
cases, an approximate preimage is considered instead Kwok & Tsang (2004); Honeine & Richard
(2011); Pandey et al. (2019). In what follows, we will temporarily assume that an exact preimage
map exists and is tractable to compute.

Let us define Ψ∗ = P̂Ek(Z, ·) as the transferred sample in G using the empirical embedded PF
operator P̂E . Then in the following proposition, we show that asymptotically the preimages of the
transferred samples converge to the target distribution.

Proposition 2.1. As n→∞, ψ† (Ψ∗)
d→ pX . In other words, the preimage of the transferred sample

approximately conforms pX under the previous assumptions when n is large.

The above statement can be shown by noticing that (1) has the same form as the kernel mean
embedding µX = ElpX = EX [l(X, ·)].
With all building blocks in hand, we now present an algorithm for sample generation using the PF
operator. A detailed description is presented in Alg. 1. The idea is simple yet powerful: at training
time, we first construct the empirical embedded PF operator using the training data {xi}i∈[s] and
samples of the known prior {zi}ı∈[n]. At inference time, we will use the constructed operator to
transfer new points sampled from the known distribution to the target feature map, and construct their
preimages as the generated output samples.

Algorithm 1 Sample Generation from embedded PF Operator
1: Input: Training data {xi}i∈[n], {zi}i∈[n]; Sample z∗ from pZ
2: Compute

s = 〈Ψ, P̂Ek(z∗, .)〉 = ΨTΨ(ΦTΦ + λnI)−1Φk(z∗, .)

= L (K + λnI)
−1

v,

where v = [k(zi, z
∗)]i ∈ Rn and

L = [l(xi, xj)]i,j ,K = [k (zi, zj)]i,j ∈ Rn×n

3: Select {xj}γj=1 as the training samples corresponding to the top γ > 0 values in s

4: x∗ = preimage
({

xj}γj=1 , s
)
.

5: Output generated sample x∗

Data

GMM

Glow

kPF

Figure 1: Estimated densities
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Glow‡ CAGlow‡ Vanilla WAE† 2-stage SRAEGlow SRAEGMM SRAERBF−kPF SRAENTK−kPF
VAE VAE (ours) (ours)

MNIST 25.8 26.3 13.7 20.4 18.3 23.7 16.7 21.7 21.5
CIFAR-10 - - 111.0 117.4 110.3 110.7 79.2 77.9 77.5
CelebA 103.7 104.9 52.1 53.7 44.7 59.8 42.0 41.9 41.0

Table 2: Comparative FID values. SRAE indicates an autoencoder with hyperspherical latent space and spectral
regularization following Ghosh et al. (2020). Subscripts indicates the corresponding sampling techniques on
latent space. For other state-of-the-art non-adversarial generative models, we compared with VAE, Two-stage
VAE, Wasserstein AE, and Glow variants. Results reported from ‡: Liu et al. (2019). †: Ghosh et al. (2020).

3 EXPERIMENTAL RESULTS

Goals. For our experiments, we mainly seek to answer two questions: dxv(a) With sufficient data,
can the proposed method generate new data with comparable performance with other state-of-the-art
generative models? (b) If only limited data samples were given, can the proposed method still
estimate the density with reasonable accuracy?

Datasets/setup. To answer the first question, we evaluate our method on CelebA, where the number
of data samples is sufficient. To generate images, we use a pretained regularized autoencoder Ghosh
et al. (2020) with a latent space restricted to the hypersphere (denoted by SRAE) to encourage smooth
latent representations, and construct the corresponding PF operator using samples of a simple prior
(i.e. isotropic Gaussian) and the latent representations of the training data. To generate new samples,
prior samples are transferred by the PF operator, and their approximate preimages were decoded
using the AE decoder. We compare our results with other state-of-the-art VAE variants (Two-stage
VAE Dai & Wipf (2019), WAE Arjovsky et al. (2017)), and flow-based generative models (Glow
Kingma & Dhariwal (2018), CAGlow Liu et al. (2019)). The second question is motivated by Arora
et al. (2020), where kernel methods consistently outperform neural networks in small data settings.
In order to evaluate this more challenging case, we randomly pick 100 training samples (< 1% of the
full dataset) from CelebA and evaluate the FIDs for all density approximators on the latent space.

Two-stage VAE SRAEGMM SRAEGlow SRAENTK-kPF

Figure 2: Comparison of different sampling techniques on latent space of AE trained on CelebA
64x64. Left to right: (1) samples of Two-stage VAE (2) samples of SRAE+GMM (3) samples of
SRAE+Glow (4) samples of SRAE+NTK-kPF using 10k latent points.

Results. We evaluate the quality by calculating the Fréchet Inception Distance (FID) Heusel et al.
(2017) with 10K generated images from each model. All implemented models shares the same
encoder/decoder structure used in Ghosh et al. (2020). Subscript indicates different types of density
estimators learned on the latent variables, including Glow Kingma & Dhariwal (2018), Gaussian
mixture model (GMM), and two proposed PF operators with Gaussian kernel as the input kernel
(RBF-kPF) and with NTK as the input kernel (NTK-kPF). We further note that, since the estimated PF
operator can be computed in closed form, it incurs an over 50× reduction in learning time compared
with neural network based approaches (i.e. VAE and Glow).

Comparative results using training on the entire data is shown in Table 2, with some generated
samples in Fig. 2. Furthermore, with only 100 training samples, our models obtain FID values of
40.6 (RBF-kPF) and 40.9 (NTK-kPF) compared with 59.3 (VAE), 77.0 (Glow) and 39.6 (GMM).
This clearly dictates the effectiveness of the proposed method in the limited data setting.

4 CONCLUSIONS

In this paper, we show that with the help of recent developments in regularized autoencoders and
neural kernels, a linear kernel transfer operator can potentially be an efficient substitute for the forward
operator in some generative models. Our proposed method shows comparable empirical results to
other state-of-the-art generative models on CelebA, while enjoying much better computational
efficiency. Furthermore, we showed performance gain using our proposed method even in case of
few number of samples presented during training.
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