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ABSTRACT

A considerable proportion of the passive acoustic data sets collected for marine
mammal conservation purposes remain unanalyzed by human experts. In some
cases, the aforementioned proportion amounts to as much as 97% of the entire
data set. As a result, research and development into automated classification sys-
tems rely on sparsely annotated data sets. In this work we adapt a semi-supervised
deep learning approach to develop a classification system of marine mammal vo-
calizations such that both the annotated and non-annotated portions of an acoustic
data set can be used during training.

1 INTRODUCTION

Passive acoustic monitoring (PAM) is a practical approach to measuring marine mammal species
presence and abundance and is largely used for conservation purposes. Historically, PAM data is
collected continuously over several months via moored recording devices (Mellinger et al. (2007);
Van Parijs et al. (2009)). When the recording devices are retrieved, often as little as three percent
of the entirety of the data is manually annotated (Kowarski & Moors-Murphy (2020)). Machine
learning has been a useful tool in developing automated detection and classification systems (DCS)
of marine mammal vocalizations for many years in order to assist with acoustic analysis, however,
more recently as researchers have started to develop deep learning-based DCS, a requirement for
large labeled data sets has been observed (Thomas et al. (2019); Kirsebom et al. (2020); Shiu et al.
(2020)). As it relates to PAM, deep learning faces two data-related challenges. First, the percentage
of PAM data that is manually annotated is inordinately scarce. Second, depending on the sampling
strategy used to determine which acoustic recordings should be analyzed, annotations may lack
satisfactory variation. For example, the acoustic sources during the first month of a several month
deployment may vary dramatically to that of the following month depending on weather conditions,
the presence of different species, and additional sources of noise.

In this work, we adapt the semi-supervised learning algorithm MixMatch (Berthelot et al. (2019))
in order leverage unlabeled data and improve the performance of a convolutional neural network
(CNN) used to classify spectrograms containing minke whale vocalizations against instances con-
taining ambient noise, non-biological noise, or the vocalizations of other marine mammals. In par-
ticular, we demonstrate that through semi-supervised learning, CNNs remain an appropriate solution
to spectrogram classification even in cases where only a relatively small number of labeled examples
is available.

2 DATA SET AND METHODS

2.1 ACOUSTIC DATA SETS

There are two data sets used in this paper. The first, “Set A”, consists of acoustic recordings spanning
roughly three months from late August to November of 2015. During this time, three Autonomous
Multichannel Acoustic Recorders (AMARs) were deployed in the Bay of Fundy in order to measure
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the sound produced by vessels as well as detect marine mammal vocalizations. The second data
set, “Set B”, consists of a selection of acoustic recordings taken from a large scale deployment from
November 2017 to June 2018, along the Atlantic Outer Continental Shelf (OCS).

The two data sets serve distinct purposes. Set A is used for model training/validation. Instances per-
taining to possible false alarms, were taken from 227 fully-annotated WAV files. The minke whale
annotations were taken from 160 of these same files, plus an additional 512 partially-annotated
files. Finally, roughly 10 percent of the remaining non-annotated files making up the remainder of
the deployment were processed to be used for semi-supervised learning. Set B represents a proxy
for out-of-distribution (OOD) examples and therefore is only used during model testing. Table 1
contains the annotation distribution of Sets A and B separated by acoustic sources. Figure 1 depicts
the distribution of the training data with respect to time, separated by annotation level. As you can
see, the training data is sparse in terms of the number of minke whale annotations and highly un-
balanced in favour of the sources of possible false alarm. From a supervised learning perspective,
the total number of minke whale annotations available for training is smaller than many benchmark
data sets commonly used in image recognition (Sun et al. (2017)).

Figure 1: Distribution of the training set over time, factored by the deployment location (station) and
the file’s annotation level (fully, partially, or non-annotated). Files that contain at least one minke
whale annotation are plotted as blue squares. Files that either explicitly do not (fully-annotated files)
or possibly contain an pulse train (partially/non-annotated) are plotted using red X’s. A slight jitter
was added in order to distinguish files from the same date.

Table 1: Annotation distribution for Sets A and B separated at the acoustic source level.

Set A Set B
Acoustic source shorthand training validation testing
Minke whale pulse train MW 556 56 336
Ambient noise AB 5560 620 -
Fin whale FW 3383 422 -
Humpback whale HB 5773 597 -
North Atlantic right whale RW 462 49 -
Non-biological noise NN - - 266
Sei whale SW - - 62

2



Under review as a workshop paper at ICLR 2021

2.2 MINKE WHALE PULSE TRAINS AND SPECTROGRAM GENERATION

Minke whales are currently not listed as endangered species under the Marine Mammal Protection
Act, however, researchers believe that the species is still being threatened by various sources of
anthropogenic activity, including: climate change, entanglement in fishing gear, ship strikes, and
increased underwater noise (Risch et al. (2019)). In this work, we train a CNN capable of classifying
spectrograms containing a vocalization distinct to minke whales known as a “pulse train”. Minke
pulse trains typically occupy the 200–400 Hz band and have a duration of roughly 45 to 60 seconds
(Mellinger et al. (2000); Risch et al. (2013)). An example of a minke pulse train can be seen in
Figure 2.

Each time series corresponding to the acoustic recordings (i.e., WAV files) were split into 45-second
segments, overlapped by three seconds, and passed through a Short-time Fourier Transform (STFT)
with a window size equal to 2048 frames overlapped by 512 frames using a Hann windowing func-
tion. The magnitude of the STFT was then scaled to decibels (dB) as is common in underwater
acoustics and truncated using an upper frequency bound of 1000Hz. Finally, the spectrograms were
normalized between [0, 1]. The resulting scaled, truncated, and normalized spectrogram is equiva-
lent to a single training instance.

2.3 SEMI-SUPERVISED LEARNING

The semi-supervised learning algorithm used in this paper, MixMatch, was presented as a state-of-
the-art approach to handling label scarcity across a variety of image recognition tasks (Berthelot
et al. (2019)). MixMatch is grounded upon the use of two types of data-augmentation. First, Mix-
Match makes use of the similarly named mixup data-augmentation strategy such that the CNN learns
a vicinal distribution (Chapelle et al. (2001)) rather than an empirical distribution of the data. The
second data-augmentation strategy used by MixMatch corresponds to common data-augmentation
strategies often used in image recognition (e.g., cropping, rotation, etc.). Such image transforma-
tions can not be used on spectrograms without potentially impacting the acoustic representation.
Therefore we rely on a set of augmentations known as SpecAugment (Park et al. (2019)), as shown
in Figure 2.

Figure 2: Example training instance before and after applying SpecAugment. Column one (starting
from the left) contains the original instance of a minke pulse train. Column two contains the same
instance after being “time-warped” using SpecAugment. Column three contains examples of time
and frequency masking.

3 EXPERIMENTAL RESULTS

3.1 MODEL TRAINING

We train a baseline ResNet-18 model via fully supervised learning and contrast the performance
against several models trained using MixMatch and various hyperparameters. All models were im-
plemented in PyTorch (Paszke et al. (2017)). Model training was distributed over two NVIDIA V100
GPUs until early stopping was deemed necessary. The model trained via supervised learning used
mini-batches of size 64, while the semi-supervised model was trained using mini-batches of size 48
(16 labeled examples plus 2 × 16 unlabeled examples). Due to the unbalanced class distribution, a
balanced sampler was used during training. The initial learning rate of all models was set to 0.001
and decayed by a factor of ten after the training loss plateaued. Per the suggestions of the authors
in Berthelot et al. (2019), the semi-supervised loss weighting parameter λU was increased linearly
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over the first five epochs. The highest performing models in terms of F-1 score on the validation set
was maintained after each epoch.

3.2 BASELINE VS. SEMI-SUPERVISED RESULTS

In general, we found that setting the weighting parameter (λU ) to a value between 10 and 50 lead to
well performing models in terms of F-1 score. No significant change in performance was observed
for the hyperparameter used by mixup (α). The remainder of this section presents the performance of
semi-supervised models setting λU = 10 and α = 0.5. Based on our experiments, the SpecAugment
hyperparameters were more important compared to the those used for MixMatch, with the exception
of time warping, which did not impact performance. In general we found that a balanced number of
time and frequency masks performs favourably. The best performing models were observed using
two time and frequency masks and setting the maximum possible widths of each mask equal to
roughly 10 percent of the dimensions of the spectrogram.

Table 2 compares the performance of the model trained using supervised learning to that trained us-
ing MixMatch. Performance was evaluated on the validation data of Set A and is presented in terms
of precision, recall, and F-1 score. The depicted values represent the median training run in terms of
F-1 score after training each model five times using different random number generator seeds. The
performance of the model trained using semi-supervised learning outperforms that trained strictly
using labeled data. This is a substantial finding as it implies the features learned by the CNN were
positively influenced by unlabeled data.

Table 2: Performance comparison of the baseline and semi-supervised CNNs in terms of precision,
recall, and F-1 score, measured on the validation data of Set A: Bay of Fundy.

Training paradigm precision recall F-1 score
Supervised 0.79700 0.85807 0.82641
Semi-supervised (λU = 10, α = 0.5) 0.81645 0.90301 0.85755

3.3 OUT-OF-DISTRIBUTION RESULTS

The two models from Section 3.2 were used to classify the data from Set B and the results are
presented in Table 3. As we can see, the models trained using MixMatch outperform the models
trained using only labeled data. Importantly, the observed increase in performance is even larger
for Set B, clearly demonstrating that the baseline models are more susceptible to training bias.
Moreover, the performance of the semi-supervised models on Set B actually exceed that of Set A,
demonstrating that the features learned by the semi-supervised CNNs can generalize to acoustic
data collected in distinct locations, at varying times and depths, and are less susceptible to unknown
acoustic sources.

Table 3: Performance comparison of the baseline and semi-supervised CNN architectures in terms
of precision, recall, and F-1 score, measured using the data from Set B: Atlantic OCS.

Training paradigm precision recall F-1 score
Supervised 0.75213 0.75178 0.75195
Semi-supervised (λU = 10, α = 0.5) 0.89658 0.88799 0.89226

4 CONCLUSION

This paper presents the clear benefits of using semi-supervised learning for the development of
deep learning based classification systems for PAM. In particular, we demonstrate that by including
unlabeled instances to the training routine of a CNN used to classify spectrograms possibly con-
taining the vocalizations of minke whales, we are capable of learning features that generalize well
to unseen data and OOD examples. The results of this work are substantial and the application of
semi-supervised learning is novel to this domain.
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