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ABSTRACT

Despite over two decades of progress, imbalanced data is still considered a sig-
nificant challenge for contemporary machine learning models. With modern ad-
vances and rapid developments in deep learning, countering the problem of imbal-
anced data has become extremely important. The two main approaches to address
this issue are based on loss function modifications and instance resampling, typ-
ically based on Generative Adversarial Networks (GANs) that may suffer from
mode collapse. Therefore, there is a need for an oversampling method that is
specifically tailored to deep learning models, can work on raw images while pre-
serving their properties, and is capable of generating high quality, artificial im-
ages that can enhance minority classes and balance the training set. We propose
DeepSMOTE - a novel oversampling algorithm for deep learning models. It is
simple, yet effective in its design. It consists of only three major components:
(i) an encoder/decoder framework; (ii) SMOTE-based oversampling; and (iii) a
dedicated loss function enhanced with a penalty term. An important advantage
of DeepSMOTE over GAN-based oversampling is that DeepSMOTE does not re-
quire a discriminator, and it generates high-quality artificial images that are both
information-rich and suitable for visual inspection. DeepSMOTE code is publicly
available: https://github.com/dd1github/DeepSMOTE.

1 INTRODUCTION

Learning from imbalanced data is among the crucial problems faced by the machine learning com-
munity (Krawczyk, 2016). Skewed distributions affect the training process of any classifier, leading
to unfavourable bias towards the majority class(es). This may result in high error, or even complete
omission, of the minority class(es). Such a situation cannot be accepted in most real-world applica-
tions (e.g., medicine or intrusion detection) and thus algorithms for countering the class imbalance
problem have been a focus of intense research for over two decades (Fernández et al., 2018).

Motivation. While the imbalanced data problem adversely affects deep learning models, there has
been limited research on how to counter this challenge. Two main directions have been loss func-
tion modifications (Cao et al., 2019) and resampling approaches (Bellinger et al., 2020). The deep
learning resampling solutions are either pixel-based or use GANs for artificial instance generation
(Mullick et al., 2019). Both of these approaches suffer from limitations. Pixel-based solutions of-
ten cannot capture complex data properties of images and are not capable of generating meaningful
artificial images. GAN-based solutions require significant amounts of data, are difficult to tune,
and may suffer from mode collapse. Therefore, there is a need for a novel oversampling method
that is specifically tailored to deep learning models, can work on raw images while preserving their
properties, and is capable of generating high-quality artificial images.

Summary of contributions. We propose DeepSMOTE - a novel oversampling algorithm for deep
learning models based on the highly popular SMOTE method for shallow learning (Chawla et al.,
2002). Our method bridges the advantages of metric-based resampling approaches, with a deep
architecture capable of working with complex and high-dimensional data. DeepSMOTE consists
of three major components: (i) an encoder/decoder framework; (ii) SMOTE-based oversampling;
and (iii) a dedicated loss function enhanced with a penalty term. This approach allows us to em-
bed effective SMOTE-based artificial instance generation within a deep encoder / decoder model
for a streamlined and end-to-end process, including low dimensional embeddings, artificial image
generation, and multi-class classification.
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2 OVERSAMPLING IMBALANCED DATA FOR DEEP LEARNING

Oversampling is a proven technique for combating class imbalance for traditional (i.e., shallow)
learning models (Fernández et al., 2018). Several attempts have been made to extend oversampling
methods, such as SMOTE, to deep learning models, with mixed results (Ando & Huang, 2017;
Johnson & Khoshgoftaar, 2019).

Researchers have looked to other avenues within the deep learning ecosystem to replicate the benefits
of oversampling with respect to the class imbalance problem. For example, generative models can
achieve similar results as oversampling. GANs (Goodfellow et al., 2014), Variational Autoencoders
(VAE) (Kingma & Welling, 2013), and Wasserstein Autoencoders (WAE) (Tolstikhin et al., 2017),
have been successfully used within computer vision (Karras et al., 2020) and robotic control (Bonatti
et al., 2019) to learn the latent distribution of data. Once the underlying distribution is learned, these
models then sample from the distribution to produce images or actions.

VAEs operate by maximizing a variational lower bound of the data log-likelihood Hu et al. (2017);
Doersch (2016). In deep learning models, the loss function in a VAE is typically implemented by
combining a reconstruction loss with the Kullback-Leibler (KL) divergence. The KL divergence
can be interpreted as an implicit penalty on the reconstruction loss. By penalizing the reconstruction
loss, the model can learn to vary its reconstruction of the input data distribution and thus generate
output (e.g., images) based on a latent distribution of the input. A key advantage of VAEs is that
they can be implemented with a single deep learning model and they learn an embedding of the
raw input (i.e., they reduce the raw input to a lower dimensional feature space so that the mean
and variance can be calculated for purposes of the KL divergence). Although VAEs have sound
theoretical foundations, they sometimes produce blurry images that may not always resemble the
input Mescheder et al. (2017).

WAEs also exhibit generative qualities. Similar to VAEs, the loss function of a WAE is often imple-
mented by combining a reconstruction loss with a penalty term. In the case of a WAE, the penalty
term is expressed as the output of a discriminator network. Unlike VAEs, WAEs require a discrimi-
nator network and the introduction of a hyper-parameter in the loss function.

GANs have achieved impressive results in the computer vision arena (Wu et al., 2019; Chen et al.,
2016). GANs formulate image generation as a min-max game between a generator and a discrim-
inator network (Pfau & Vinyals, 2016). Despite their impressive results, GANs require the use of
two networks, are sometimes difficult to train and are subject to mode collapse (i.e., the repetitive
generation of similar examples) (Miyato et al., 2018; Salimans et al., 2016; Gulrajani et al., 2017;
Arjovsky et al., 2017).

3 DEEPSMOTE

We propose DeepSMOTE - a novel and breakthrough oversampling algorithm dedicated to enhanc-
ing deep learning models and countering the learning bias caused by imbalanced classes. In order
for an oversampling method to be successfully applied to deep learning models, we believe that it
should meet three essential criteria:

1. It should operate in an end-to-end manner by accepting raw input, such as images (i.e.,
similar to VAEs, WAEs and GANs).

2. It should learn a representation of the raw data and embed the data into a lower dimensional
feature space, which can be used for oversampling.

3. It should readily generate output (e.g., images) that can be visually inspected, without
extensive manipulation.

In this paper, we show through our design steps and experimental evaluation that Deep SMOTE
meets these criteria. In addition, it produces sharp images without the need for a discriminator
network. DeepSMOTE is straight-forward in its implementation. It consists of an encoder / decoder
framework, a SMOTE-based oversampling method, and a loss function with a reconstruction loss
and a penalty term. Each of these features is discussed below, while the overview of DeepSMOTE
is presented in Algorithm 1.
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Algorithm 1: DEEPSMOTE
Data: B: batches of imbalanced training

data B = {b1, b2, . . . , bn}
Input: Model parameters:

Θ = {Θ0,Θ1, . . . ,Θj}; Learning
Rate: α

Output: Balanced training set.
Train the Encoder / Decoder:
for e← epochs do

for m← B do
EB ← encode(B)
DB ← decode(EB)

RL = 1
n

∑n
i=1

(
DBi− D̂Bi

)2

CD ← sample(class data)
ES ← encode(CD)
PE ←
permute− order − of(ES)
DP ← decode(PE)

PL = 1
n

∑n
i=1

(
DP i− D̂P i

)2

TL = RL + PL

Θj := Θj − α ∂TL
∂Θj

(Θ0,Θ1)

Generate Samples:
for i← no. of minority classes do

C ← select(class data)
E ← encode(C)
G← SMOTE(E)
S ← decode(G)

Endoder/decoder framework. It is based on the DC-
GAN architecture established by Radford et al (Rad-
ford et al., 2015). Radford et al. employ a discrimina-
tor / generator in a GAN, which is fundamentally sim-
ilar to an encoder / decoder because the discriminator
effectively encodes input (absent the final, fully con-
nected layer) and the generator (decoder) produces out-
put. The encoder and decoder are trained in an end-to-
end fashion. During DeepSMOTE training, an imbal-
anced dataset is fed to the encoder / decoder in batches.
A reconstruction loss is computed on the batched data.
All classes are used during training so that the encoder
/ decoder can learn to reconstruct both majority and mi-
nority class images from the imbalanced data. Because
there are few minority class examples, majority class
examples are used to train the model to learn the ba-
sic reconstruction patterns inherent in the data. This
approach is based on the assumption that classes share
some similar characteristics (e.g., all classes represent
digits or faces).

Enhanced loss function. In addition to a reconstruc-
tion loss, the Deep SMOTE loss function contains a
penalty term. The penalty term is based on a recon-
struction of embedded images. DeepSMOTE’s penalty
loss is produced in the following fashion. During train-
ing, a batch of images is sampled from the training set.
The number of sampled images is the same as the num-
ber of images used for reconstruction loss purposes;
however, unlike the images used during the reconstruc-

tion loss phase of training, the sampled images are all from the same class. The sampled images are
then reduced to a lower dimensional feature space by the encoder. During the decoding phase, the
encoded images are not reconstructed by the decoder in the same order as the encoded images. By
changing the order of the reconstructed images, which are all from the same class, we effectively
introduce variance into the encoding / decoding process. This variance facilitates the generation
of images during inference. In addition, by permuting the order of the data (instead of directly
using SMOTE in the training phase), we overcome a common issue with metric based learning -
the need to access the full training set, which can be computationally challenging in deep learning
frameworks. For both reconstruction loss terms, we use mean squared error. DeepSMOTE is trained
using gradient descent and the Adam optimizer (Kingma & Ba, 2014). Batch normalization is used
to stabilize training (Ioffe & Szegedy, 2015).

Artificial image generation. Once DeepSMOTE is trained, images can be generated with the en-
coder / decoder structure. The encoder reduces the raw input to a lower dimensional feature space,
which is oversampled by SMOTE. The decoder then decodes the SMOTED features into images,
which can augment the training set of a deep learning classifier. The main difference between the
Deep SMOTE training and inference phases is that during inference, SMOTE is substituted for the
order permutation step. SMOTE is used during inference to introduce variance; whereas, during
training, variance is introduced by permuting the order of the training examples and also through the
penalty loss.

4 EXPERIMENTAL STUDY

Benchmark datasets. Five popular datasets were selected as benchmarks for evaluating imbalanced
data oversampling: MNIST (LeCun et al., 1998), Fashion-MNIST (Xiao et al., 2017), CIFAR-10
(Krizhevsky et al., 2009), the Street View House Numbers (SVHN) (Netzer et al., 2011), and Large-
scale CelebFaces Attributes (CelebA) (Liu et al., 2015). Imbalance was introduced by random per-
class instance selection. For the MNIST and Fashion-MNIST datasets, the class distributions are
[4000, 2000, 1000, 750, 500, 350, 200, 100, 60, 40]; for the CIFAR-10 and SVHN datasets they are
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[4500, 2000, 1000, 800, 600, 500, 400, 250, 150, 80]; and for CelebA they are [9000, 4500, 1000,
500, 160].

Reference methods. We compared DeepSMOTE to four pixel-based oversampling algorithms:
SMOTE, Adaptive Mahalanobis Distance-based Over-sampling (AMDO) (Yang et al., 2018), Com-
bined Cleaning and Resampling (MC-CCR) (Koziarski et al., 2020), and Radial-Based Over-
sampling (MC-RBO) (Krawczyk et al., 2020); as well as to two GAN-based methods: Bal-
anced GAN (BAGAN) (Mariani et al., 2018) and Generative Adversarial Minority Oversampling
(GAMO)(Mullick et al., 2019). All resampling methods were used to create a balance training set
for Resnet-18 classifier (He et al., 2016).

Evaluation procedure. A 5-fold cross-validation was used for training and testing the selected
algorithms. We evaluated their performance using three skew-insensitive metrics for multi-class im-
balanced data: Average Class Specific Accuracy (ACSA), macro-averaged Geometric Mean (GM)
and macro-averaged F1 measure (FM) (Fernández et al., 2018).

Table 1: Comparison of DeepSMOTE versus reference resampling method

MNIST FMNIST CIFAR SV HN CELEBA

ACSA GM F1 ACSA GM F1 ACSA GM F1 ACSA GM F1 ACSA GM F1

SMOTE 81.48 83.99 82.44 67.94 74.84 67.12 28.02 50.08 29.58 70.18 76.33 71.80 60.29 70.48 60.03
AMDO 84.29 88.73 84.88 74.90 80.89 75.39 31.19 53.99 32.44 71.94 78.52 73.06 63.54 72.86 62.94

MC-CCR 86.19 92.04 86.46 78.58 86.17 79.03 32.83 56.68 33.91 72.01 80.94 74.26 65.23 77.14 64.88
MC-RBO 87.25 94.46 88.69 80.06 88.02 80.14 33.01 59.15 35.83 74.20 82.97 74.91 67.11 80.52 65.37

BAGAN 92.56 96.11 93.85 82.50 90.51 82.96 42.41 64.12 43.01 75.81 86.44 77.02 68.62 80.84 68.33
GAMO 95.45 97.61 95.11 83.05 90.76 83.00 44.72 65.72 45.93 75.07 86.00 76.68 66.06 79.11 64.85

DeepSMOTE 96.16 98.11 96.44 84.88 91.63 83.79 45.26 66.13 44.86 79.59 88.67 80.71 72.40 82.91 66.99

Experiment 1: DeepSMOTE vs reference resampling. Table 1 presents the comparison of
DeepSMOTE with reference resampling methods. We can see that pixel-based resampling ap-
proaches performed much worse than deep learning methods. Only the MC-RBO approach was
able to return results not far from GAN-based methods. This shows that pixel-based resampling
cannot be used efficiently to train robust deep learning classifiers. GAN-based reference methods
performed better, although still out-performed by DeepSMOTE on all three metrics. This shows that
DeepSMOTe is at the same time simple and effective, being able to create information-rich artificial
instances following topologies of minority classes and capturing their local properties.

(a) Originals (b) BAGAN (c) GAMO (d) DeepSMOTE

Figure 1: CelebA minority class images. Row 1 (brown hair); row 2 (blond hair); row 3 (gray hair);
row 4 (bald)

Experiment 2: Quality of artificially generated images. Figure 1 presents the artificially gener-
ated images for CelebA dataset by BAGAN, GAMO, and the proposed DeepSMOTE. We can clearly
see the quality of DeepSMOTE-generated images. This can be attributed to DeepSMOTE using
an efficient encoding/decoding architecture with an enhanced loss function, as well as preserving
class topology via metric-based instance imputation. Outcomes of both experiments demonstrates
that DeepSMOTE generates artificial images that are both information-rich (improve discrimination
abilities of deep classifiers and counter the majority bias) and are of high visual quality.

5 CONCLUSION

We proposed DeepSMOTE, which marries the simplicity of metric learning with deep architectures
that work on complex data. DeepSMOTE works in an end-to-end process, and generates high quality
images that can be used for data augmentation and overcoming class imbalance.
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