
Under review as a conference paper at ICLR 2021

DATA-EFFICIENT TRAINING OF AUTOENCODERS FOR
MILDLY NON-LINEAR PROBLEMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Principal Component Analysis (PCA) provides reliable dimensionality reduction
(DR) when data possesses linear properties even for small datasets. However,
faced with data that exhibits non-linear behaviour, PCA cannot perform optimally
as compared to non-linear DR methods such as AutoEncoders. By contrast, Au-
toEncoders typically require much larger datasets for training than PCA. This data
requirement is a critical impediment in applications where samples are scarce and
expensive to come by. One such area is nanophotonics component design where
generating a single data point might involve running optimization methods that
use computationally demanding solvers.
We propose Guided AutoEncoders (G-AE) of nearly arbitrary architecture which
are standard AutoEncoders initialized using a numerically stable procedure to
replicate PCA behaviour before training. Our results show this approach yields
a marked reduction in the data size requirements for training the network along
with gains in capturing non-linearity during dimensionality reduction and thus
performing better than PCA alone.

1 INTRODUCTION

Principal Component Analysis (PCA) is a classical approach for dimensionality reduction [Pearson
(1901)]. It provides excellent performance for linearly dependent data, however, its performance is
compromised when the data exhibits non-linearity. PCA has been successfully used in numerous
domains and provides respectable performance for dimensionality reduction. However, in many of
these domains, the data exhibits some degree of non-linearity and therefore non-linear methods are,
in principle, expected to yield superior results.

One such domain is a nanophotonic component design that requires computationally expensive
Maxwell equation solvers to obtain data or optimize device performance. In [Melati et al. (2019)],
it was shown that PCA can be effectively used to reveal a lower dimensional design subspace of
well-performing designs of a vertical grating coupler. As a result, it was possible to investigate only
the interesting part of the design space very efficiently and reveal meaningful patterns and trade-
offs. However, it was noticed that the original design space was slightly curved, meaning that lin-
ear dimensionality reduction might be suboptimal, leaving room for improvement using non-linear
methods.

AutoEncoders are standard neural networks with the distinct feature that their inputs and outputs are
of the same dimension n, while in an intermediary layer a smaller number of neurons, d, is placed
(d < n). The result is that the layers preceding the bottleneck act as an encoder and the layers
proceeding it are the decoder for the reduced representation in the bottleneck. As such, the size of
the bottleneck controls the degree of dimensionality reduction achieved. While Autoencoders are
well-suited for non-linear dimensionality reduction, their typical data requirements far exceed those
of PCA to be competitive in problems with scarce data.

Typically, AutoEncoders are trained with random initialization of weights. Yet, it is well known that
the behaviour of PCA with p components can be modeled using an AutoEncoder with a bottleneck
of p neurons and linear activation functions throughout the network [Baldi & Hornik (1989)]. In this
paper, we explore the use of PCA to initialize the weights of an AutoEncoder in a numerically stable
way and to enable the AutoEncoder to benefit from the linearly optimized solution. Specifically,

1



Under review as a conference paper at ICLR 2021

Figure 1: AutoEncoder architecture used in ex-
periments

Figure 2: Schematic representation of grating
coupler structure (reproduced with permission
from [Melati et al. (2019)]).

we propose Guided AutoEncoders (G-AE) of nearly-arbitrary architecture, which, given a PCA
dimensionality reduction to d dimensions, are initialized with PCA weights with linear activation
functions and a bottleneck of size d thus replicating PCA behaviour. The activation function is then
changed to a non-linear one and the G-AE is trained in the usual way, hence enabling the network
to capture non-linear behavior.

There have been efforts to use PCA initialization of AutoEncoders such as [Seuret et al. (2017)]
however, these studies differ from our study in two important ways: (i) they focus predominantly
on images which present the AutoEncoder much larger vectors than we deal with here, and (ii) their
chief concern is not with drastically reducing the size of the training set.

Evaluated on the nanophotonic component design problem, our results show a marked improvement
in the data size requirements for training the network along with clear gains in capturing the non-
linearity of the data during dimensional reduction.

2 METHODOLOGY

We assume that the architecture of the G-AE is vase-shaped as in Figure [1], where first the data
is expanded in its dimensionality and then reduced back to the original dimension n before being
reduced to the bottleneck dimension d. Although not necessary, it makes the weights initialization
process easier while allowing a significant degree of randomness. The n-D to n-D expand-contract
parts can be effectively generated by a series of random projection matrices (full rank matrices with
all singular values being 1) such that the entire expand-contract part becomes a full rank projection
matrix itself. The weights of the bottleneck are then calculated from PCA obtained from data. This
allows a numerically stable randomized initialization of G-AE of arbitrary depth that mimicks PCA.

The design of the experiment is intended to replicate a low-data regime in practice. In particular, in
such a setting, one is severely constrained in the data to be set aside for testing and cross validation.
Having good initial weights of the AutoEncoder plays a crucial role in giving it a significant head-
start since this initialization potentially covers the action of many epochs of training that would
otherwise be needed to get to that point—epochs that in a low-data regime run a serious risk of
overfitting. Because there is an element of randomness in the choice of initial weights, we try
different initializations of the AutoEncoder and select the one that appears to produce the best result.

In our experiments we split the data into 80% for training 10% for validation and 10% for testing,
where the validation set is used to identify when to stop the training process and the test set is used
to compare performance across all models including PCA. The total data amounts considered to
be available is only 50 samples. In our case this resulted in 40 data samples used for training, 5
for validation and 5 for testing. As well, to corroborate our entire experimental setup that can be
sensitive to data splits due to the low data regime, we set aside 100 designs as an oracle test set.
The experiments are further repeated 100 times creating different data splits to measure accurate
statistics of the results.

The complete set of data we have for the vertical grating coupler consists of 540 good designs. These
were obtained from computationally expensive simulations-based optimizations and selected from
a set consisting of more than 30,000 candidate designs based on an optical performance criterion.

2



Under review as a conference paper at ICLR 2021

Figure 3: Error for PCA, Random Initialization
and PCA Initilization on Test Set

Figure 4: Error for PCA, Random Initialization
and PCA Initilization on Oracle Set

The designs are characterized by five segment values (L1 to L5) which are the parameters to the
design problem (see Figure 2). Each of these segment values is a real number that forms an element
of the input vector. In [Melati et al. (2019)], it was shown that 2 principal components were enough
to capture most of the good design subspace.

Using the Adam optimizer, and the LeakyReLU activation function for all the layers, we set the
negative slope progressively from 1 (linear) to 0.86 (mildly non-linear) with a gradation of 0.01 and
trained the network for each slope, once with PCA initialization and once without. We instituted
early stopping in the training based on the validation set to avoid overfitting. The Euclidean distance
between the input and output vectors is used as the loss function, which is an implicit objective of
PCA as well.

The AutoEncoder we experimented with had 8 layers including the input and output layers and, in
sequence from the input layer to the output layer, they had the following number of neurons: 5-20-5-
2-5-20-5 (see Figure 1). Note that the bottleneck for our experiment is 2 which allows us to compare
with PCA with 2 principal components as in [Melati et al. (2019)]. The choice of this architecture
is somewhat arbitrary and was not optimized for the problem.

Once the training is complete, and based on its performance on the test set, we choose the best
model from the various initializations we deployed. As mentioned earlier, we also confirm that this
procedure is statistically meaningful by measuring the performance of all model types (AE, G-AE,
PCA) on a much larger oracle test set.

As well, we experimented with the Parametric ReLU (PRELU) activation function. The key dif-
ference with our initial experiment is that in our experiments with LeakyReLU we probed negative
slopes between 0.86 and 1 and for each training cycle every node had exactly the same slope. In the
case of PRELU, each node is allowed to vary its slope independently as a trainable parameter. To
reflect the PCA-based initialization, all initial slopes of PRELU were initialized to 1.

3 RESULTS

Figure 3 shows the performance of the model on the test set which is used to assess the quality of
the model. We notice that G-AE outperforms randomly-initialized AutoEncoders and PCA for a
variety of slope values. Yet, randomly initialized AEs perform comparably or worse than PCA. As
expected, when we look at the performance on the oracle set (Figure 4) we see the same trends as
observed in the Figure 3 while having tighter error bounds.

Table 1 shows the results of our experiments with PReLU. Although randomly initialized AE with
PReLU activation function performs comparably to PCA, the G-AE outperfoms both.

3



Under review as a conference paper at ICLR 2021

Table 1: PReLU

Model Oracle Set Error Test Set Error

PCA-initialized PReLU (G-AE) 3.27± 0.02 3.21± 0.06
PCA 3.48± 0.01 3.62± 0.07
Randomly Initialized PReLU AE 3.42± 0.1 3.35± 0.09

4 CONCLUSION AND FUTURE WORK

In this work we demonstrated that AutoEncoders, with proper initialization, can offer a viable solu-
tion for dimensionality reduction even in a regime of limited data. Our results show that, on small
but sufficient datasets, the use of PCA to initialize a LeakyReLU and PReLU AutoEncoders in a nu-
merically stable way yields results that are superior to randomly initialized AutoEncoders, and even
PCA alone. These results are encouraging in domains where only PCA has been used to reduce the
dimensionality due to very limited datasets available.

In our experiments the range of slopes was limited and potentially better models can be achieved
by expanding on that range. On the other hand, drastic change in slope from 1 (linear) can also
be detrimental and the resulting model will become highly non-linear and might loose the benefits
of PCA-based initialization. Studying the trade-offs of those initializations and suggesting smooth
learning schemes that follow continuation methods is one avenue for future work.

While in this work we evaluated the proposed method directly on real data, it would be instructive
to construct a synthetic study to compare the performance of PCA versus AutoEncoders on datasets
of different size, level of non-linearity and noise. This can be, for instance, data generated from a
paraboloid function and other shapes.

Finally, initialization of the network weights in the proposed fashion might offer a degree of stability
and robustness similar to the proposals that address adversarial example issues in neural networks
and enforce general smoothness [Cisse et al. (2017); Anil et al. (2019)].

REFERENCES

Cem Anil, James Lucas, and Roger Grosse. Sorting out lipschitz function approximation. In Inter-
national Conference on Machine Learning, pp. 291–301. PMLR, 2019.

Pierre Baldi and Kurt Hornik. Neural networks and principal component analysis: Learning from
examples without local minima. Neural networks, 2(1):53–58, 1989.

Moustapha Cisse, Piotr Bojanowski, Edouard Grave, Yann Dauphin, and Nicolas Usunier. Parseval
networks: Improving robustness to adversarial examples. In International Conference on Machine
Learning, pp. 854–863. PMLR, 2017.

Daniele Melati, Yuri Grinberg, Mohsen Kamandar Dezfouli, Siegfried Janz, Pavel Cheben, Jens H
Schmid, Alejandro Sánchez-Postigo, and Dan-Xia Xu. Mapping the global design space of
nanophotonic components using machine learning pattern recognition. Nature communications,
10(1):1–9, 2019.

Karl Pearson. Liii. on lines and planes of closest fit to systems of points in space. The London,
Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2(11):559–572, 1901.

M. Seuret, M. Alberti, M. Liwicki, and R. Ingold. Pca-initialized deep neural networks applied to
document image analysis. In 2017 14th IAPR International Conference on Document Analysis
and Recognition (ICDAR), volume 01, pp. 877–882, 2017. doi: 10.1109/ICDAR.2017.148.

4


	Introduction
	Methodology
	Results
	Conclusion and Future Work

