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ABSTRACT

With the rapid growth of data, it is becoming increasingly difficult to train or im-
prove deep learning models with the right subset of data. We show that this problem
can be effectively solved at an additional labeling cost by targeted data subset
selection (TSS) where a subset of unlabeled data points similar to an auxiliary set
are added to the training data. We do so by using a rich class of Submodular Mutual
Information (SMI) functions and demonstrate its effectiveness for image classifi-
cation on CIFAR-10 and MNIST datasets. Lastly, we compare the performance
of SMI functions for TSS with other state-of-the-art methods for closely related
problems like active learning. Using SMI functions, we observe ≈ 30% gain
over the model’s performance before re-training with added targeted subset;
≈ 12% more than other methods.

1 INTRODUCTION

Recent times have seen unprecedented growth in data across modalities such as text, images and
videos. This has naturally given rise to techniques for finding effective smaller subsets of the data for
a variety of end-tasks. An example of this is data subset selection for efficient and/or cost-effective
training of machine learning models, wherein we need to select samples which are most informative
for training a model. Training on such smaller subsets of data often entails significant speedups
and reduction in labeling time/cost without sacrificing much on accuracy. Another flavor of this is
targeted data subset selection which focuses on improving an existing model which is performing
poorly is specific cases or improving a dataset which is imbalanced in certain attributes. Quite often,
in these end-tasks, we want to be able to select subsets that align well with a certain target set.

1.1 TARGETED DATA SUBSET SELECTION
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Figure 1: Motivating example for targeted data
subset selection (TSS): the night images (target)
are under-represented in training data. TSS mines
for night images and augments the training data to
improve the performance of the final model.

In real-world settings, there is often a distribu-
tion shift between training data and test data.
Moreover, this distribution shift is reoccurring
because new critical cases arise quite often. In
such cases a model’s performance can be im-
proved (at a given additional labeling cost) by
augmenting the training data with some most in-
formative samples matching the target distribu-
tion (hence called targeted subset) from a large
pool of unlabeled data. One way of achieving
this is by assuming access to a clean validation
set matching the target set distribution and using
it as a target. Another example is where the tar-
get set is a critical slice of the data (e.g., indoor
images of people in the dark or images from spe-
cific classes that the user might care about) and
we want to improve the model’s performance
on the target without sacrificing the overall ac-
curacy and with minimum additional labeling
costs (Fig. 1).
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2 PRELIMINARIES

Submodular Functions: We let V denote the ground-set of n data points V = {1, 2, 3, ..., n}
and a set function f : 2V −→ <. The function f is submodular (Fujishige, 2005) if it satisfies the
diminishing marginal returns, namely f(j|X ) ≥ f(j|Y) for all X ⊆ Y ⊆ V, j /∈ Y . Facility location,
set cover, log determinants, etc. are some examples (Iyer, 2015). Due to close connections between
submodularity and entropy, submodular functions can also be viewed as information functions (Zhang
& Yeung, 1998). Submodularity ensures that a greedy algorithm achieves bounded approximation
factor when maximized (Nemhauser et al., 1978).

Submodular Mutual Information (MI): Given a set of items A,B ⊆ V , the submodular mutual
information (MI) (Gupta & Levin, 2020; Iyer et al., 2020) is defined as If (A;B) = f(A) + f(B)−
f(A ∪ B). Intuitively, this measures the similarity between B and A and we refer to B as the query
set.

Kaushal et al. (2020) extend MI to handle the case when the target can come from an auxiliary set
V ′ different from the ground set V . For targeted data subset selection, V is the source set of data
instances and the target is a subset of data points (validation set or the specific set of examples of
interest). Let Ω = V ∪ V ′. We define a set function f : 2Ω → <. Although f is defined on Ω, the
discrete optimization problem will only be defined on subsets A ⊆ V . To find an optimal subset
given a query set Q ⊆ V ′, we can define gQ(A) = If (A;Q), A ⊆ V and maximize the same.

2.1 EXAMPLES OF SMI FUNCTIONS

We use the MI functions recently introduced in Iyer et al. (2020); Gupta & Levin (2020) and their
extensions introduced in Kaushal et al. (2020). For any two data points i ∈ V and j ∈ Q, let sqij
denote the similarity between them.

Graph Cut MI: The submodular mutual information (SMI) instantiation of graph-cut (GCMI) is
defined as:

If (A;Q) = 2
∑
i∈A

∑
j∈Q

sqij (1)

Since maximizing GCMI maximizes the joint pairwise sum with the query set, it will lead to a
summary similar to the query set Q. In fact, specific instantiations of GCMI have been intuitively
used for query-focused summarization for videos Vasudevan et al. (2017) and documents Lin (2012);
Li et al. (2012).

Facility Location MI - V1: In the first variant of FL, we set D to be V . The SMI instantiation of
FL1MI can be defined as:

If (A;Q) =
∑
i∈V

min(max
j∈A

sij , ηmax
j∈Q

sqij) (2)

The first term in the min(.) of FL1MI models diversity, and the second term models query relevance.
An increase in the value of η causes the resulting summary to become more relevant to the query.

Facility Location MI - V2: In the V2 variant, we set D to be V ∪ Q. The SMI instantiation of
FL2MI can be defined as:

If (A;Q) =
∑
i∈Q

max
j∈A

sqij + η
∑
i∈A

max
j∈Q

sqij (3)

FL2MI is very intuitive for query relevance as well. It measures the representation of data points
that are the most relevant to the query set and vice versa. It can also be thought of as a bidirectional
representation score.

Log Determinant MI: The SMI instantiation of LogDetMI can be defined as:

If (A;Q) = log det(SA)− log det(SA − η2SA,QS
−1
Q STA,Q) (4)

SA,B denotes the cross-similarity matrix between the items in sets A and B. The similarity matrix in
constructed in such a way that the cross-similarity between A and Q is multiplied by η to control the
trade-off between query-relevance and diversity.
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3 A FRAMEWORK FOR TARGETED DATA SUBSET SELECTION

We apply SMI functions to a simple setting of targeted data subset selection for improving a model’s
accuracy on some target classes/instances at a given additional labeling cost (k instances) and without
compromising on the overall accuracy. Let E be an initial training set of labeled instances and T be
the set of examples that the user cares about and desires better performance on. Let U be a large
unlabeled dataset. We maximize a MI function If (A; T ) to compute an optimal subset A∗ ⊆ U of
size k given T as target (query) set. We then augment E with labeled A∗ and re-train the model to
achieve better accuracy without compromising on the accuracy of other classes/instances. Through
instantiating a rich class of MI functions including GCMI, FL1MI, FL2MI, COM and LogDetMI,
TSS offers a rich treatment to targeted subset selection. Our framework allows for adding an explicit
diversity term (γg(A)) helpful in cases such as GCMI that do not model diversity. The algorithm is
summarized in Algorithm 1.

Algorithm 1 TSS
Require: Initial Labeled set of Examples: E , large unlabeled dataset: U , A target subset/slice where

we want to improve accuracy: T , Loss function L for learning
1: Train model with loss L on labeled set E and obtain parameters θE
2: Compute the gradients {∇θEL(xi, yi), i ∈ U} (using hypothesized labels) and
{∇θEL(xi, yi), i ∈ T }.

3: Compute the similarity kernels S (this includes kernel of the elements within U , within T and
between U and T ) and define a submodular function f and diversity function g

4: Â ← maxA⊆U,|A|≤k If (A;T ) + γg(A)

5: Obtain the labels of the elements in A∗: L(Â)

6: Train a model on the combined labeled set E ∪ L(Â)

4 EFFECTIVENESS OF SMI FOR TSS

Dataset, Baselines and Implementation details: We demonstrate the effectiveness of TSS in
obtaining a targeted subset for improving image classification accuracy for some target classes on
CIFAR-10 and MNIST datasets. To simulate a real-world setting, we split the available train set
further into train, validate and a data lake such that (i) the train set has few labeled instances and poorly
represents two randomly picked classes (target), and (ii) data lake is a large set whose labels we do
not use (resembling a large pool of unlabeled data in real-world). The poorly represented classes do
not perform well on the validation set and hold clue to picking up the target of interest. Performance
is measured on the test set from the respective datasets. We then apply TSS (Algorithm 1) comparing
MI functions with other existing approaches. Specifically, for MI functions we use LogDetMI, GCMI,
FL1MI, FL2MI, and GCMI + Diversity (equivalent to an intuitive approach of minimizing average
gradient difference with the target) For existing approaches, we compare with three active learning
baselines (uncertainty sampling (US), BADGE, and GLISTER-ACTIVE (GLISTER)) running them
only once as per our setting (i.e. we select the unlabeled subset only once). Since these active learning
baselines do not explicitly have information of the target set, to further strengthen them we also
compare against two variants which are target-aware. The first is ’targeted uncertainty sampling’
(TUS) where a product of the uncertainty and the similarity with the target is used to identify the
subset, and second is GLISTER-TSS where the target set is used in the bi-level optimization. Finally,
we also compare with pure diversity/representation functions (Facility Location (FL), Graph Cut
(GC), Log Determinant (LogDet), Disparity-Sum (DSUM)) and random sampling. We train the
model (ResNet-18 (He et al., 2016) for CIFAR-10, LeNet (LeCun et al., 1989) for MNIST) using
cross-entropy loss and SGD optimizer until training accuracy exceeds 99% (Base model). After
augmenting the train set with the labeled version of the selected subset and re-training the model,
we report the average gain in accuracy for the target classes and overall gain in accuracy across all
classes, averaged across 10 runs of randomly picking any two classes as target. We run TSS for
different budgets and also study the effect of budget on the performance. Wherever applicable, we
keep the internal parameters at their default values of 1.

Results: In Table 1, we report the results for a budget of 400 for CIFAR-10 and 70 for MNIST.
To keep the setting as realistic as possible, we set the target set to be much smaller than the budget
(around 10% of the budget – 44 for CIFAR-10 and 6 for MNIST). We report the effect of budget
on the gain in accuracy of the target classes in Fig. 2. On both datasets, MI functions yield the best
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improvement in accuracy on the target classes (≈ 30% gain over the model’s performance before
re-training with added targeted subset; ≈ 12% more than other methods) while also simultaneously
increasing the overall accuracy by ≈ 6%. They consistently outperform BADGE, GLISTER-TSS, US
and TUS across all budgets. Since the SMI functions (LogDetMI, Fl2MI and GCMI+DIV) model
both query-relevance and diversity, they perform better than both a) functions which tend to prefer
relevance (GCMI, TUS) and b) functions which tend to prefer diversity/representation (BADGE, FL,
GC, DSUM, LogDet). Also, we observe that, as the budget is increased, the MI functions outperform
other methods by greater margins on the target class accuracy (Fig. 2). This is expected, as other
methods are not effective in considering the target.

Figure 2: Comparison of different methods for targeted subset selection for different budgets on
CIFAR-10 and MNIST. X-axis: budgets, Y-axis: gain in model accuracy for target classes. MI based
approaches (lines in red) significantly outperform others across all subset sizes. (Section 4).

Method CIFAR-10 MNIST
Target Overall Target Overall

Base 11.2 52.34 52.76 88.26
Random +2.75 +1.43 +1.08 -0.03
BADGE (Ash et al., 2020) +8.8 +0.66 +6.7 +1.66
GLISTER (Killamsetty et al., 2020) +14.15 +1.25 +18.36* +2.56
GLISTER-TSS +18.3* +1.53 +11.19 +2.2
US (Settles, 2009) +3.95 +2.03 +7.56 +1.18
TUS +10.45 +2.99* +6.21 +1.61
LogDet +12.3 +2.8 +14.2 +2.96
FL +6.8 +1.14 +17.05 +3.4*
GC -1.3 -1.1 +14.97 +3.26
DSUM +3.8 +1.66 +14.39 +2.79
LogDetMI +29.05 +4.95 +32.97 +6.84
FL2MI +33.7 +6.59 +33.57 +6.69
FL1MI +17.65 +4.2 +27.51 +5.57
GCMI +26.55 +4.5 +30.79 +6.12
GCMI+DIV +31.65 +6.01 +34.59 +7.10

Table 1: Comparison of TSS (MI functions) with other methods for a budget of 400 (CIFAR-10) and
70 (MNIST). The numbers are the gain in % accuracy of the target classes (Target) and all classes
(Overall) over the Base model after re-training the model (see text). Best among existing approaches
is indicated with *, highest in blue, 2nd and 3rd highest in red and green respectively.

5 CONCLUSION

We demonstrate the effectiveness of SMI functions for improving a model’s performance by aug-
menting the training data with samples that match a target distribution (targeted data subset selection).
Through experiments on CIFAR-10 and MNIST datasets, we empirically verify the superiority of
SMI functions over existing methods.
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