
Published as a conference paper at ICLR 2021

VOICE2SERIES: REPROGRAMMING ACOUSTIC MOD-
ELS FOR TIME SERIES CLASSIFICATION

Chao-Han Huck Yang1 ∗ Yun-Yun Tsai2 Pin-Yu Chen3

1Georgia Institute of Technology, USA; ∗corresponding author
2National Tsing Hua University, Taiwan
3MIT-IBM Watson AI Lab, IBM Research, USA

ABSTRACT

Learning to classify time series with limited data is a practical yet challenging
problem. Current methods are primarily based on hand-designed feature extraction
rules or domain-specific data augmentation. Motivated by the advances in deep
speech processing models and the fact that voice data are univariate temporal sig-
nals, in this paper we propose Voice2Series (V2S), a novel end-to-end approach that
reprograms acoustic models for univariate time series classification, through input
transformation learning and output label mapping. Leveraging the representation
power of a large-scale pre-trained speech model, on 31 different time series tasks
we show that V2S outperforms or is tied with state-of-the-art methods on 22 tasks,
and improves their average accuracy by 1.72%. We further provide theoretical jus-
tification of V2S by proving its population risk is upper bounded by the source risk
and a Wasserstein distance accounting for feature alignment via reprogramming.
Our results offer new and effective means to time series classification.

1 INTRODUCTION

Machine learning for time series data has rich applications in a variety of domains, ranging from
medical diagnosis (e.g., physiological signals such as electrocardiogram (ECG) (Kampouraki et al.,
2008)), finance/weather forecasting, to industrial measurements (e.g., sensors and Internet of Things
(IoT)). It is worth noting that one common practical challenge that prevents time series learning tasks
from using modern large-scale deep learning models is data scarcity. While many efforts (Fawaz et al.,
2018; Ye & Dai, 2018; Kashiparekh et al., 2019) have been made to advance transfer learning and
model adaptation for time series classification, a principled approach is lacking and its performance
may not be comparable to conventional statistical learning benchmarks (Langkvist et al., 2014).
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Figure 1: Schematic illustration of the proposed
Voice2Series (V2S) framework: (a) trainable repro-
gram layer; (b) pre-trained acoustic model (AM);
(c) source-target label mapping function.

To bridge this gap, we propose a novel approach,
named voice to series (V2S), for time series
classification by reprogramming a pre-trained
acoustic model (AM), such as a spoken-terms
recognition model. Unlike general time series
tasks, modern AMs are trained on massive hu-
man voice datasets and are considered as a ma-
ture technology widely deployed in intelligent
electronic devices. The rationale of V2S lies in
the fact that voice data can be viewed as univari-
ate temporal signals, and therefore a well-trained
AM is likely to be reprogrammed as a powerful
feature extractor for solving time series classification tasks. Figure 1 shows a schematic illustration
of the proposed V2S framework, including (a) a trainable reprogram layer, (b) a pre-trained AM, and
(c), a specified label mapping function between source (human voice) and target (time series) labels.

Model reprogramming was firstly introduced in (Elsayed et al., 2019). The authors show that one
can learn a universal input transformation function to reprogram a pre-trained ImageNet models
(without changing the model weights) for solving MNIST/CIFAR-10 image classification and simple
vision-based counting tasks with high accuracy. It can be viewed as an efficient approach for transfer
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learning with limited data, and it has achieved state-of-the-art (SOTA) results on biomedical image
classification tasks (Tsai et al., 2020). Despite empirical success, little is known on how and why
reprogramming can be successful. Different from existing works, this paper aims to address the
following three fundamental questions: (i) Can acoustic models be reprogrammed for time series
classification? (ii) Can V2S outperform SOTA time-series classification results? (iii) Is there any
theoretical justification on why reprogramming works?

Our main contributions in this paper provide affirmative answers to the aforementioned fundamental
questions.

1. We propose V2S, a novel and unified approach to reprogram large-scale pre-trained acoustic
models for different time series classification tasks. To the best of our knowledge, V2S is
the first framework that enables reprogramming for time series tasks.

2. Tested on a standard UCR time series classification benchmark (Dau et al., 2019) with 31
different tasks, V2S outperforms or is tied with the best reported results on 22 datasets and
improves their average accuracy by 1.72%, suggesting that V2S is a principled and effective
approach for time series classification.

3. In Section 3, we develop a theoretical risk analysis to characterize the performance of
reprogramming on the target task via source risk and representation alignment loss. In
Section 4, we also show how our theoretical results can be used to assess the performance
of reprogramming. Moreover, we provide interpretation on V2S through auditory neural
saliency map and embedding visualization.

2 VOICE2SERIES (V2S)

Throughout this paper, we will denote a K-way acoustic classification model pre-trained on voice
data as a source model, and use the term target data to denote the univariate time-series data to be
reprogrammed. The notation P is reserved for denoting a probability function.

2.1 V2S REPROGRAMMING ON DATA INPUTS

Here we formulate the problem of V2S reprogramming on data inputs. Let xt ∈ XT ⊆ RdT denote a
univariate time series input from the target domain with dT temporal features.

Our V2S aims to find a trainable input transformation functionH that is universal to all target data
inputs, which serves the purpose of reprogramming xt into the source data space XS ⊆ RdS , where
dT ≤ dS . Specifically, the reprogrammed sample x′t is formulated as:

x′t = H(xt; θ) := Pad(xt) +M � θ︸ ︷︷ ︸
, δ

(1)

where Pad(xt) is a zero padding function that outputs a zero-padded time series of dimension dS .
The location of the segment xt to be placed in x′t is a design parameter and we defer the discussion
to Section B.1. The term M ∈ {0, 1}dS is a binary mask that indicates the location of xt in its
zero-padded input Pad(xt), where the i-th entry of M is 0 if xt is present (indicating the entry is non-
reprogrammable), and it is 1 otherwise (indicating the entry is not occupied and thus reprogrammable).
The � operator denotes element-wise product. Finally, θ ∈ RdS is a set of trainable parameters for
aligning source and target domain data distributions. One can consider a more complex function
W (θ) in our reprogramming function. But in practice we do not observe notable gain when compared
to the simple function θ. In what follows, we will use the term δ , M � θ to denote the trainable
additive input transformation for V2S reprogramming. Moreover, for ease of representation we will
omit the padding notation and simply use xt + δ to denote the reprogrammed target data, by treating
the “+” operation as a zero-padded broadcasting function.

2.2 V2S REPROGRAMMING ON ACOUSTIC MODELS (AMS)

We select a pre-trained deep acoustic classification model as the source model (fS) for model
reprogramming. We assume the source model has softmax as the final layer and outputs nonneg-
ative confidence score (prediction probability) for each source label. With the transformed data
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inputs H(xt; θ) described in (1), one can obtain the class prediction of the source model fS on an
reprogrammed target data sample xt, denoted by:

P (ys|fS(H(xt; θ))), for all ys ∈ YS (2)

Next, as illustrated in Figure 1, we assign a (many-to-one) label mapping function h to map source
labels to target labels. For a target label yt ∈ YT , its class prediction will be the averaged class
predictions over the set of source labels assigned to it. We use the term P (h(YS)|fS(H(xt; θ)))
to denote the prediction probability of the target task on the associated ground-truth target label
yt = h(YS). Finally, we learn the optimal parameters θ∗ for data input reprogramming by optimizing
the following objective:

θ∗ = arg min
θ
− logP (h(YS)|fS(H(xt; θ))︸ ︷︷ ︸

V2S loss , L

; (3)

where h (YS) = yt

The optimization will be implemented by minimizing the empirical loss (V2S loss L) evaluated on
all target-domain training data pairs {xt, yt} for solving θ∗.

In practice, we find that many-to-one label mapping can improve the reprogramming accuracy when
compared to one-to-one label mapping, similar to the findings in (Tsai et al., 2020). Below we make
a concrete example on how many-to-one label mapping is used for V2S reprogramming. Consider
the case of reprogramming spoken-term AM for ECG classification. One can choose to map multiple
(but non-overlapping) classes from the source task (e.g., ’yes’, ’no’, ’up’, ’down’ in AM classes) to
every class from the target task (e.g., ’Normal’ or ’Ischemia’ in ECG classes), leading to a specified
mapping function h. Let B ⊂ YS denote the set of source labels mapping to the target label yt ∈ YT .
Then, the class prediction of yt based on V2S reprogramming is the aggregated prediction over the
assigned source labels, which is defined as:

P (yt|fS(H(xt; θ)) =
1

|B|
∑
ys∈B

P (ys|fS(H(xt; θ)) (4)

where |B| denotes the number of labels in B. In our implementation we use random (but non-
overlapping) many-to-one mapping between source and target labels. Each target label is assigned
with the same number of source labels. We report our test accuracy based on hyperparameters
determined by 10-fold cross-validation on the training data.

3 POPULATION RISK VIA REPROGRAMMING

Theorem 1: Let δ∗ denote the learned additive input transformation for reprogramming. The
population risk for the target task via reprogramming a K-way source neural network classifier
fS(·) = η(zS(·)), denoted by EDT [`T (xt + δ∗, yt)], is upper bounded by:

EDT [`T (xt + δ∗, yt)] ≤ εS︸︷︷︸
source risk

+2
√
K · W1(µ(zS(xt + δ∗)), µ(zS(xs)))xt∼DT , xs∼DS︸ ︷︷ ︸

representation alignment loss via reprogramming

Theorem 1 shows that the target population risk via reprogramming is upper bounded by the sum-
mation of two terms: (i) the source population risk εS , and (ii) the representation alignment loss in
the logit layer between the source data zS(xs) and the reprogrammed target data zS(xt + δ∗) based
on the same source neural network classifier fS(·) = η(zS(·)), measured by their Wasserstein-1
distance. The results suggest that reprogramming can perform better (lower risk) when the source
model has a lower source loss and smaller representation loss. Proof will be given in the full version.

4 PERFORMANCE EVALUATION

Limited-vocabulary Voice Commends Dataset: To create a large-scale (∼100k training samples)
pre-trained acoustic model for our experiments, we select the Google Speech Commands V2 (Warden,
2018) dataset, which contains 105,829 utterances of 35 words with a sampling rate of 16 kHz..
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Table 1: Performance comparison of validation (test) accuracy (%) on 31 UCR time series classifica-
tion datasets (Dau et al., 2019). Our proposed V2Sa outperforms or ties with some current SOTA
results (Cabello et al., 2020; Wang et al., 2017; Lines et al., 2018) on 22 out of 31 datasets.

Dataset Type Input size Train. Data Class SOTA V2Sa V2Su TFa
Beef SPECTRO 470 30 5 93.33 90.33 90.00 20
Coffee SPECTRO 286 28 2 100 100 100 53.57
DistalPhalanxTW IMAGE 80 400 6 79.28 79.28 75.34 70.21
ECG 200 ECG 96 100 2 90.9 100 100 100
ECG 5000 ECG 140 500 5 94.62 93.96 93.11 58.37
Earthquakes SENSOR 512 322 2 76.91 78.42 76.45 74.82
FordA SENSOR 500 2500 2 96.44 100 100 100
FordB SENSOR 500 3636 2 92.86 100 100 100
GunPoint MOTION 150 50 2 100 96.67 93.33 49.33
HAM SPECTROM 431 109 2 83.6 78.1 71.43 51.42
HandOutlines IMAGE 2709 1000 2 93.24 93.24 91.08 64.05
Haptics MOTION 1092 155 5 51.95 52.27 50.32 21.75
Herring IMAGE 512 64 2 68.75 68.75 64.06 59.37
ItalyPowerDemand SENSOR 24 67 2 97.06 97.08 96.31 97
Lightning2 SENSOR 637 60 2 86.89 100 100 100
MiddlePhalanxOutlineCorrect IMAGE 80 600 2 72.23 83.51 81.79 57.04
MiddlePhalanxTW IMAGE 80 399 6 58.69 65.58 63.64 27.27
Plane SENSOR 144 105 7 100 100 100 9.52
ProximalPhalanxOutlineAgeGroup IMAGE 80 400 3 88.09 88.78 87.8 48.78
ProximalPhalanxOutlineCorrect IMAGE 80 600 2 92.1 92.1 90.03 68.38
ProximalPhalanxTW IMAGE 80 400 6 81.86 84.88 83.41 35.12
SmallKitchenAppliances DEVICE 720 375 3 85.33 83.47 74.93 33.33
SonyAIBORobotSurface SENSOR 70 20 2 96.02 96.02 91.71 34.23
Strawberry SPECTRO 235 613 2 98.1 97.57 91.89 64.32
SyntheticControl SIMULATED 60 300 6 100 98 99 49.33
Trace SENSOR 271 100 4 100 100 100 18.99
TwoLeadECG ECG 82 23 2 100 96.66 97.81 49.95
Wafer SENSOR 152 1000 2 99.98 100 100 100
WormsTwoClass MOTION 900 181 2 83.12 98.7 90.91 57.14
Worms MOTION 900 181 5 80.17 83.12 80.34 42.85
Wine SPECTRO 234 57 2 92.61 90.74 90.74 50
Mean accuracy (↑) - - - - 88.19 89.91 87.92 56.97
Median accuracy (↑) - - - - 92.61 93.96 91.08 53.57
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Figure 2: Left: V2S architectures. (a) V2Sa (de Andrade et al., 2018) & (b) V2Su (Yang et al., 2020).
Right: tSNE plots of the logit representations using Strawberry training set (Holland et al., 1998) and
V2Sa, for the cases of before and after V2S reprogramming, and fine-tuned transfer learning (TFa).

Transformer-based AMs: For training the source model, we use a popular transformer based single-
head self-attention architecture (de Andrade et al., 2018) for V2S reprogramming, denoted as V2Sa
(Figure 2 (a)). We also train a similar architecture with U-Net (Long et al., 2015), denoted as V2Su
(Figure 2 (b)), which is designed to enhance feature extraction in acoustic tasks (Yang et al., 2020).

Reprogramming Performance: Table 1 summarizes the performance of each method on 31 datasets.
Notably, our reprogrammed V2Sa model attains better or equivalent results in 22 over the 31 univariate
UCR datasets, suggesting that V2S as a single method is a competitive and promising approach for
time series classification. The transfer learning baseline TFa has poor performance, which can be
attributed to limited training data. V2Sa has higher mean/median accuracy, increased by 1.72/1.35%.
and lower MPCE (Wang et al., 2017) (relative error decreases by about 2.87%) than that of SOTA
results, demonstrating the effectiveness of V2S. For most datasets, V2Sa has better performance than
V2Su, which can be explained by Theorem 1 through a lower empirical target risk upper bound.

5 CONCLUSION

In this work, we proposed V2S, a novel approach to reprogram a pre-trained acoustic model for time
series classification. We also developed a theoretical risk analysis to characterize the reprogramming
performance. Experimental results on UCR benchmark showed superior performance of V2S, by
achieving new (or equal) state-of-the-art accuracy on 22 out of 31 datasets. We further provide
in-depth discussion on the success of V2S through representation alignment, acoustic saliency map,
and embedding visualization in the full version for additional and future studies.
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